23.随机快速排序

1.普通快速排序

算法思想:

1.使用递归来实现快排
2.每次选择数组l到r中的一个数,把他放到正确的位置上,左边都是<=它的的,右边都是比它大的
3.如何实现2这个方法?
	假设我们挑选的数是x
	设置指针a和i,最开始都指向l位置
	如果i位置的数小于等于x ,交换i和a位置的数 a++ i++
	如果i位置的数大于x ,交换i和a位置的数  i++
   (上面的意思其实a就是一个边界,a的左边全是比x小或等于的)

代码如下:

	// 随机快速排序经典版(不推荐)
	// 甚至在洛谷上测试因为递归开太多层会爆栈导致出错
	public static void quickSort1(int l, int r) {
		// l == r,只有一个数
		// l > r,范围不存在,不用管
		if (l >= r) {
			return;
		}
		// 随机这一下,常数时间比较大
		// 但只有这一下随机,才能在概率上把快速排序的时间复杂度收敛到O(n * logn)
		// l......r 随机选一个位置,x这个值,做划分
		int x = arr[l + (int) (Math.random() * (r - l + 1))];
		int mid = partition1(l, r, x);
		quickSort1(l, mid - 1);
		quickSort1(mid + 1, r);
	}

	// 已知arr[l....r]范围上一定有x这个值
	// 划分数组 <=x放左边,>x放右边
	// 并且确保划分完成后<=x区域的最后一个数字是x
	public static int partition1(int l, int r, int x) {
		// a : arr[l....a-1]范围是<=x的区域
		// xi : 记录在<=x的区域上任何一个x的位置,哪一个都可以
		int a = l, xi = 0;
		for (int i = l; i <= r; i++) {
			if (arr[i] <= x) {
				swap(a, i);
				if (arr[a] == x) {
					xi = a;
				}
				a++;
			}
		}
		swap(xi, a - 1);
		return a - 1;
	}

	public static void swap(int i, int j) {
		int tmp = arr[i];
		arr[i] = arr[j];
		arr[j] = tmp;
	}

2.随机快速排序改进版

算法思想:

刚才我们每次挑选一个数放到正确的位置上,划分也是左边比他小或等于,右边比他大。
但是如果我们每次能把相等的都找出来放到正确位置上,这样左边都是比他小的,右边都是比他大的。跑递归时候会大大提高效率。
所以我们采用a b i三个指针 a指针左边都是比他小的 b指针右边都是比他大的。a b 指针之间就相等的。

代码如下:

	// 随机快速排序改进版(推荐)
	// 可以通过所有测试用例
	public static void quickSort2(int l, int r) {
		if (l >= r) {
			return;
		}
		// 随机这一下,常数时间比较大
		// 但只有这一下随机,才能在概率上把快速排序的时间复杂度收敛到O(n * logn)
		int x = arr[l + (int) (Math.random() * (r - l + 1))];
		partition2(l, r, x);
		// 为了防止底层的递归过程覆盖全局变量
		// 这里用临时变量记录first、last
		int left = first;
		int right = last;
		quickSort2(l, left - 1);
		quickSort2(right + 1, r);
	}
		// 荷兰国旗问题
	public static int first, last;

	// 已知arr[l....r]范围上一定有x这个值
	// 划分数组 <x放左边,==x放中间,>x放右边
	// 把全局变量first, last,更新成==x区域的左右边界
	public static void partition2(int l, int r, int x) {
		first = l;
		last = r;
		int i = l;
		while (i <= last) {
			if (arr[i] == x) {
				i++;
			} else if (arr[i] < x) {
				swap(first++, i++);
			} else {
				swap(i, last--);
			}
		}
	}

普通快速排序,时间复杂度O(n^2),额外空间复杂度O(n)
随机快速排序,时间复杂度O(n * logn),额外空间复杂度O(logn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值