安装深度学习环境

1、安装显卡驱动(用nvidia-smi来验证)

2、安装对应的CUDA版本(安装时候的选项中有Driver,不选,因为已经安装过了。)

3、安装cuDNN(类似于一个CUDA的编译器)

下载网址:cuDNN Archive | NVIDIA Developer

根据需求选择,8.6.0 for CUDA 11.x

下载完毕之后解压

解压后不进入文件夹,执行下面三行命令

sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include

sudo cp -P cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64

sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

然后 cd /usr/local/cuda/include

vim cudnn_version.h

此时有文件信息输出并且显示版本号就是安装成功。

4、安装TensorRT

从官网下载TensroRT:Log in | NVIDIA Developer

选择8.5.0 GA版本(GA代表稳定版,EA代表抢先版本)

下载后解压缩

在解压缩后设置环境变量

vim ~/.bashrc

export LD_LIBRARY_PATH=/home/haonanlu/TensorRT/TensorRT-8.5.1.7.Linux.x86_64-gnu.cuda-11.8.cudnn8.6/TensorRT-8.5.1.7/lib:$LD_LIBRARY_PATH


alias trtexec="/home/haonanlu/TensorRT/TensorRT-8.5.1.7.Linux.x86_64-gnu.cuda-11.8.cudnn8.6/TensorRT-8.5.1.7/bin/trtexec"

进入压缩文件夹

cd python

根据自己电脑的python版本号,本机为python3.6.x

输入 python3 -m pip install tensorrt-8.6.1-cp36-none-linux_x86_64.whl

如果为3.7.x就把cp36改为cp37

至此结束

验证TensorRT是否安装成功

trtexec

有输出。

再cd samples/sampleOnnxMNIST/

make

cd ../..

cd bin/

./sample_onnx_mnist

有出下图即为成功

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值