1、安装显卡驱动(用nvidia-smi来验证)
2、安装对应的CUDA版本(安装时候的选项中有Driver,不选,因为已经安装过了。)
3、安装cuDNN(类似于一个CUDA的编译器)
下载网址:cuDNN Archive | NVIDIA Developer
根据需求选择,8.6.0 for CUDA 11.x
下载完毕之后解压
解压后不进入文件夹,执行下面三行命令
sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include
sudo cp -P cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
然后 cd /usr/local/cuda/include
vim cudnn_version.h
此时有文件信息输出并且显示版本号就是安装成功。
4、安装TensorRT
从官网下载TensroRT:Log in | NVIDIA Developer
选择8.5.0 GA版本(GA代表稳定版,EA代表抢先版本)
下载后解压缩
在解压缩后设置环境变量
vim ~/.bashrc
export LD_LIBRARY_PATH=/home/haonanlu/TensorRT/TensorRT-8.5.1.7.Linux.x86_64-gnu.cuda-11.8.cudnn8.6/TensorRT-8.5.1.7/lib:$LD_LIBRARY_PATH
alias trtexec="/home/haonanlu/TensorRT/TensorRT-8.5.1.7.Linux.x86_64-gnu.cuda-11.8.cudnn8.6/TensorRT-8.5.1.7/bin/trtexec"
进入压缩文件夹
cd python
根据自己电脑的python版本号,本机为python3.6.x
输入 python3 -m pip install tensorrt-8.6.1-cp36-none-linux_x86_64.whl
如果为3.7.x就把cp36改为cp37
至此结束
验证TensorRT是否安装成功
trtexec
有输出。
再cd samples/sampleOnnxMNIST/
make
cd ../..
cd bin/
./sample_onnx_mnist
有出下图即为成功