GRSL 2025 | 高光谱超分-深度多流网络A Deep Multistream Network for Hyperspectral Image Super-Resolution

DMSN: A Deep Multistream Network for Hyperspectral Image Super-Resolution

10.1109/LGRS.2025.3530106

问题背景

  • 实用性和可解释性差:大多数现有的高光谱图像与多光谱图像(HSI-MSI)融合方法,要么依赖于退化模型的先验知识,要么需要足够的训练数据,这阻碍了它们的实用性和可解释性。
  • 侧重于捕捉空间信息关系,忽略了多尺度信息融合的适应性,在特征提取时会导致信息丢失

研究方法

  1. 提出网络模型:提出一种用于高光谱图像超分辨率的深度多流网络(DMSN)。
  2. 设计模块
    • 引入 Spa-DNet 和 Spe-UNet 模块,对跨分辨率的空间和光谱变换进行编码。
    • 设计 Int-Net,实现空间和光谱信息的交互,提升模型性能。

采用训练策略:采用新设计的三阶段训练策略,使网络参数能够体现退化过程的明确物理意义,从而有助于确保对所需高光谱图像的忠实重建。

退化过程的描述

损失函数,PSF和SRF退化损失

此外,提出了一种混合模型约束损失,其中包含两个项目:丰度的感知损失和目标产品的退化导向损失。我们首先提出了一种具有明确物理意义的退化导向损失。损失项的目的是指导我们的网络生成满足(1)中描述的退化模型的输出,该模型可以表示为

参数敏感性分析

物理模型指导:

DMSN(Deep Multistream Network)在其网络架构中会涉及丰度矩阵的生成,但并非以生成独立的丰度和光谱矩阵为最终目标,而是将丰度矩阵作为中间特征表示,服务于高光谱图像超分辨率(HSI-SR)的最终任务。

3. 与显式生成矩阵方法的对比

与 CS2DIPs 等方法不同,DMSN 不基于非负矩阵 - 向量张量分解(NMVTF)等物理模型显式分离丰度和光谱矩阵。它更侧重通过多流网络(空间流 Spa - UNet、光谱流 Spe - DNet、交互流 Int - Net)直接学习从输入(HR - MSI、LR - HSI)到高分辨率输出(HR - HSI 等)的映射,丰度矩阵仅作为中间特征辅助这一过程

综上,DMSN 在网络运行中会生成丰度矩阵作为中间特征,但最终目标是输出高分辨率的图像,而非独立生成丰度和光谱矩阵。丰度矩阵在这里是实现空间 - 光谱特征融合、完成超分辨率任务的工具,而非最终产品。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值