TGRS 2025 | 增强的深度先验无监督高光谱超分Enhanced Deep Image Prior for Unsupervised Hyperspectral Image Super-Reso

Enhanced Deep Image Prior for Unsupervised Hyperspectral Image Super-Reso

IEEE Transactions on Geoscience and Remote Sensing

10.1109/TGRS.2025.3531646

【问题背景】:

1. 数据依赖问题

  • 以往不足:传统监督学习方法(如 SRCNN)需大量配对的 LR-HR 数据,标注成本高,难以覆盖复杂遥感场景。
  • EDIP-Net 改进:采用无监督框架,仅依赖单幅观测图像(LrHSI Y 和 HrMSI Z),无需外部标注,降低数据获取成本,适用于遥感数据稀缺场景。

2. 深度图像先验(DIP)的低效性

  • 以往不足:DIP 及其变体(如 ZSSR)依赖随机噪声输入,收敛慢,对复杂退化(如空间 - 光谱联合退化)建模能力弱,导致光谱 / 空间失真。
  • EDIP-Net 改进:引入零样本学习阶段(ZSL),先估计退化参数(PSF/SRF)并生成粗估计图像(\(X_1, X_2\)),替代随机噪声,为深度先验学习提供有意义的初始特征,提升收敛效率和结果质量。

3. 退化模型的固定性与泛化性差

  • 以往不足:传统盲 SR 方法(如 LRMR)假设固定退化模型(如高斯模糊),无法适应遥感数据的复杂退化(如空间降采样 + 光谱响应联合退化),泛化能力弱。
  • EDIP-Net 改进:通过退化学习网络自适应估计空间(PSF)和光谱(SRF)退化参数,动态建模退化过程;结合双路径融合,对参数估计误差鲁棒,可处理多样化退化场景。

4. 光谱 - 空间一致性缺失

  • 以往不足:单模态 SR 方法忽略光谱约束(如植被光谱失真),多模态方法缺乏联合优化,导致光谱 - 空间不一致(如边缘位置与光谱特征不匹配)。
  • EDIP-Net 改进:在损失函数(公式 16)中显式约束光谱退化(与Z对比)和空间退化(与Y对比),通过双路径解码器和退化感知融合,确保 HR 图像的光谱 - 空间一致性,提升物理真实性(如植被红边、水体吸收峰的准确恢复)。

5. 多尺度特征利用不足

以往不足:单尺度网络(如 VGG)难以捕捉高光谱数据的多尺度光谱 - 空间特征(如不同波段的纹理、地物多尺度边缘),细节恢复能力有限。

EDIP-Net 改进:采用Res2Net(多尺度特征提取)、双 U 型网络(多尺度融合)和跳跃连接,增强多尺度信息表达,有效恢复地物边缘、纹理等细节,提升超分辨率结果的视觉质量(如建筑轮廓、植被纹理的清晰恢复)。

【研究方法】:

两阶段四组件架构

核心目标:从观测数据中估计退化参数并生成包含场景信息的粗估计图像,替代传统 DIP 的随机噪声输入。

1. 零样本学习阶段(Zero-Shot Learning, ZSL)

  • 退化学习网络:

任务:自适应估计空间退化核(PSF)和光谱响应函数(SRF)。

损失函数:

其中\(K_1, K_2\)分别为两个退化分支的估计参数,第二项约束参数非负性和归一化。

  • 交互式光谱学习网络

任务:基于估计的退化参数生成两个互补的粗估计图像\(X_1, X_2\)。

双流架构:每个流包含上采样模块(反卷积 + 残差块)和特征交互层(跨流特征相加)。

Res2Net 模块:在特征提取阶段引入多尺度表示,增强光谱细节捕获能力。

损失函数:

其中{F}_z表示基于估计退化参数的正向映射,确保生成的粗估计与观测 LrHSI 一致。

2. 深度图像生成阶段(Deep Image Generation, DIG)

核心目标:利用粗估计图像学习高光谱先验,生成最终超分辨率图像。

  • 双 U 型网络(Double U-Shape Network)

任务:以\(X_1, X_2\)为输入,分别生成候选超分辨率图像\(\hat{X}_1, \hat{X}_2\)。

结构:编码路径:3 个卷积块(每个包含残差连接和批归一化),通过平均池化降采样。

解码路径:2 个反卷积块,通过双线性插值上采样,结合跳跃连接融合多尺度特征。

损失函数:

对X̂₁:其空间退化结果需接近Y(LrHSI),光谱退化结果需接近Z(HrMSI)。

对X̂₂:施加相同约束,利用双路径输出的互补性(如不同退化假设下的解),提升模型对退化参数估计误差的鲁棒性。

退化参数复用:直接使用 ZSL 阶段的估计参数(PSF/SRF),避免重新学习退化模型,减少计算量。

双路径设计:生成两个互补的超分辨率候选(X̂₁, X̂₂),通过损失函数同时约束,增强结果的稳定性和细节恢复能力。

  • 退化感知决策融合策略(Degradation-Aware Decision Fusion)

任务:从\(\hat{X}_1, \hat{X}_2\)中选择最优像素级结果,生成最终超分辨率图像\(\hat{X}\)。

如前所述,通过使用标准偏差等于3.4的8×8高斯PSF进行空间退化以模拟LrHSI,并通过八波段WorldView 2多光谱传感器进行光谱退化。如图5所示,我们的方法和ADASR的GT和估计的退化参数分别显示在顶部、中部和底部。估计的PSF满足高斯分布,与ADASR相比具有更高的精度。相比之下,在ADASR的估计SRF中可以观察到很大的偏差,特别是在每条曲线的峰值处。然而,我们的预测仍然表现出与真实预测相似的形状。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值