关于样本协方差矩阵的简单推导

数据样本中心化:

1、对一维随机变量 x x x,有n个观测样本 { x 1 , x 2 , ⋯   , x n } \{ x^1,x^2,\cdots,x^n\} {x1,x2,,xn},其样本均值(期望)可定义为:
μ x = E ( x ) = 1 n ∑ i = 0 n x i \mu_x={E}\left(x\right)=\frac1n\sum_{i=0}^nx^i μx=E(x)=n1i=0nxi这样,中心化操作后的新样本为: z i = x i − μ x z^{i}=x^i-\mu_x zi=xiμx,并且 ∑ i n z i = 0 \sum_i^nz^i=0 inzi=0
2、对于m维随机变量(特征、属性),定义随机向量
x = [ x 1 x 2 ⋮ x m ] , x ∈ R m , 这 里 x i 为 第 i 个 随 机 变 量 \pmb x=\begin{bmatrix} x_1 \\ x_2 \\ \vdots\\ x_m \\ \end{bmatrix} ,\pmb x \in R^m,这里x_i 为第i个随机变量 xxx=x1x2xm,xxxRm,xii这里,再对m个随机变量的n个观测样本 { x i ∈ R m ∣ i = 1 , 2 , ⋯   , n } \{\pmb x^i\in R^m|i=1,2,\cdots,n\} {xxxiRmi=1,2,,n} 定义样本矩阵:
X = [ x 1 x 2 ⋯ x n ] = [ x 1 1 x 1 2 ⋯ x 1 n x 2 1 x 2 2 ⋯ x 2 n ⋮ ⋮ ⋱ ⋮ x m 1 x m 2 ⋯ x m n ] , X ∈ R m × n X=\begin{bmatrix} \pmb x^1 & \pmb x^2&\cdots & \pmb x^n \end{bmatrix}= \begin{bmatrix} x_1^1&x_1^2&\cdots&x_1^n\\ x_2^1&x_2^2&\cdots&x_2^n\\ \vdots&\vdots&\ddots&\vdots&\\ x_m^1&x_m^2&\cdots&x_m^n \end{bmatrix} ,X \in R^{m\times n} X=[xxx1xxx2xxxn]=x11x21xm1x12x22xm2x1nx2nxmn,XRm×n
x j i x^i_j xji表示第 i i i个样本在第 j j j个随机变量(特征、属性)上的取值。 这样,定义均值向量
μ x = E ( x ) = [ E ( x 1 ) E ( x 2 ) ⋮ E ( x m ) ] = 1 n [ ∑ i n x 1 i ∑ i n x 2 i ⋮ ∑ i n x m i ] = [ μ x 1 μ x 2 ⋮ μ x m ] \pmb {\mu_x}=E(\pmb x)=\begin{bmatrix} E(x_1) \\ E(x_2 ) \\ \vdots\\ E( x_m) \\ \end{bmatrix} =\frac 1n\begin{bmatrix} \sum_i^nx_1^i\\ \sum_i^nx_2^i \\ \vdots\\ \sum_i^nx_m^i \\ \end{bmatrix}= \begin{bmatrix} \mu_{x_1} \\ \mu_{x_2} \\ \vdots\\ \mu_{x_m} \\ \end{bmatrix} μxμxμx=E(xxx)=E(x1)E(x2)E(xm)=n1inx1iinx2iinxmi=μx1μx2μxm
中心化操作后新样本矩阵为:
Z = [ z 1 z 2 ⋯ z n ] = [ x 1 − μ x x 2 − μ x ⋯ x n − μ x ] Z=\begin{bmatrix} \pmb z^1 & \pmb z^2&\cdots & \pmb z^n \end{bmatrix}= \begin{bmatrix} \pmb x^1-\pmb{ \mu_ x}& \pmb x^2-\pmb{ \mu_ x}&\cdots &\pmb x^n-\pmb{ \mu_ x}& \end{bmatrix} Z=[zzz1zzz2zzzn]=[xxx1μxμxμxxxx2μxμxμxxxxnμxμxμx]然后有 ∑ i n z i = 0 \sum_i^n\pmb z^i=\pmb 0 inzzzi=000

样本协方差矩阵

1、对于两个一维随机变量 x x x y y y的协方差可定义为:
E [ ( x − μ x ) ( y − μ y ) ] = 1 n − 1 ∑ i n ( x i − μ x ) ( y i − μ y ) E[(x-\mu _x)(y-\mu_y)]=\frac 1{n-1}\sum_i^n (x_i-\mu_x)(y_i-\mu_y) E[(xμx)(yμy)]=n11in(xiμx)(yiμy)若样本已提前中心化,即新样本 z i = x i − μ x z^{i}=x^i-\mu_x zi=xiμx u i = x i − μ y u^{i}=x^i-\mu_y ui=xiμy并且 ∑ i n z i = 0 \sum_i^nz^i=0 inzi=0, ∑ i n u i = 0 \sum_i^n u^i=0 inui=0,带入上式得:
E [ ( x − μ x ) ( y − μ y ) ] = 1 n − 1 ∑ i n ( x i − μ x ) ( y i − μ y ) = 1 n − 1 ∑ i n z i u i E[(x-\mu _x)(y-\mu_y)]=\frac 1{n-1}\sum_i^n (x_i-\mu_x)(y_i-\mu_y)=\frac 1 {n-1}\sum_i^nz^iu^i E[(xμx)(yμy)]=n11in(xiμx)(yiμy)=n11inziui
2、对于多维随机向量 x \pmb x xxx自协方差矩阵(通常机器学习里提到的样本协方差矩阵),它是根据向量外积定义的:
E [ ( x − μ x ) ( x − μ x ) T ] = 1 n − 1 ∑ i n ( x i − μ x ) ( x i − μ x ) T E[(\pmb x-\pmb{\mu_x})(\pmb x-\pmb{\mu_x})^T]=\frac 1{n-1}\sum_i^n(\pmb x^i-\pmb{\mu_x})(\pmb x^i-\pmb{\mu_x})^T E[(xxxμxμxμx)(xxxμxμxμx)T]=n11in(xxxiμxμxμx)(xxxiμxμxμx)T同理若样本已中心化,则
E [ ( x − μ x ) ( x − μ x ) T ] = 1 n − 1 ∑ i n ( x i − μ x ) ( x i − μ x ) T = 1 n − 1 ∑ i n z i ( z i ) T = 1 n − 1 Z Z T E[(\pmb x-\pmb{\mu_x})(\pmb x-\pmb{\mu_x})^T]=\frac 1{n-1}\sum_i^n(\pmb x^i-\pmb{\mu_x})(\pmb x^i-\pmb{\mu_x})^T=\frac 1{n-1}\sum_i^n\pmb z^i(\pmb z^i)^T=\frac 1{n-1}ZZ^T E[(xxxμxμxμx)(xxxμxμxμx)T]=n11in(xxxiμxμxμx)(xxxiμxμxμx)T=n11inzzzi(zzzi)T=n11ZZT注:分块矩阵乘法可得
∑ i n z i ( z i ) T = [ z 1 z 2 ⋯ z n ] [ ( z 1 ) T ( z 2 ) T ⋮ ( z n ) T ] = Z Z T \sum_i^n\pmb z^i(\pmb z^i)^T= \begin{bmatrix} \pmb z^1&\pmb z^2&\cdots&\pmb z^n \end{bmatrix} \begin{bmatrix} (\pmb z^1)^T \\ (\pmb z^2)^T \\ \vdots\\ ( \pmb z^n)^T \\ \end{bmatrix}=ZZ^T inzzzi(zzzi)T=[zzz1zzz2zzzn](zzz1)T(zzz2)T(zzzn)T=ZZT

  • 4
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
协方差矩阵的计算公式是通过对样本数据的协方差进行计算得到的。协方差矩阵描述了不同维度之间的关系和变化趋势。 首先,假设我们有m个样本,每个样本有n个特征。我们可以将样本数据表示为一个m×n的矩阵X,其中每一行表示一个样本,每一列表示一个特征。 协方差矩阵的定义是:对于特征i和特征j,协方差矩阵的元素Cov(i, j)表示特征i和特征j之间的协方差。 协方差的计算公式是: Cov(i, j) = 1/(m-1) * Σ((X(:,i) - mean(X(:,i))) * (X(:,j) - mean(X(:,j)))), 其中,mean(X(:,i))表示第i个特征的均值,Σ表示对所有样本求和。 根据上述公式,我们可以得到协方差矩阵推导过程: 1. 首先,计算每个特征的均值,得到一个n维向量mean(X)。 2. 然后,对每个特征进行中心化操作,即将每个样本的特征值减去对应特征的均值,得到一个中心化的矩阵X_centered = X - mean(X)。 3. 接下来,计算中心化的矩阵X_centered的转置矩阵X_centered_T。 4. 最后,将中心化的矩阵X_centered和其转置矩阵X_centered_T相乘,并除以m-1,即可得到协方差矩阵Cov。 综上所述,协方差矩阵的公式推导包括计算均值、中心化操作和矩阵相乘的过程。这个公式可以应用于机器学习等领域,用于分析不同特征之间的相关性和变化趋势。<span class="em">1</span><span class="em">2</span><span class="em">3</span>

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值