根据样本计算协方差矩阵的过程

假设我们有一个包含3个样本的数据集,每个样本包含3个维度的数据,可以表示为一个3x3的矩阵。我们将使用以下数据集作为示例:

```
数据集 X = [[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9]]
```

首先,我们需要计算数据集 X 的协方差矩阵。协方差矩阵反映了数据集中各个维度之间的线性相关性。

以下是具体的计算步骤:

1. 计算数据集 X 的均值向量,即每个维度的平均值。在这个例子中,我们可以计算 X 的均值向量为:

   ```
   均值向量 mean_X = [ (1+4+7)/3, (2+5+8)/3, (3+6+9)/3 ] = [4, 5, 6]
   ```

2. 将数据集 X 的每个样本减去均值向量,得到新的数据集 X_centered。这样做是为了将数据集中心化,消除样本之间的平移影响。计算公式如下:

   ```
   X_centered = X - mean_X
              = [[1-4, 2-5, 3-6],
                 [4-4, 5-5, 6-6],
                 [7-4, 8-5, 9-6]]
              = [[-3, -3, -3],
                 [0, 0, 0],
                 [3, 3, 3]]
   ```

3. 计算数据集 X_cen

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值