吴恩达深度学习笔记(45)-Adam 优化算法(Adam optimization)

Adam优化算法结合了Momentum和RMSprop,是一种在深度学习中广泛应用且适用于多种神经网络结构的优化方法。算法通过初始化、计算微分、指数加权平均以及偏差修正来更新权重和偏置,主要涉及超参数包括学习率α、β_1、β_2和ε。通常使用默认值,如β_1=0.9, β_2=0.999, ε=10^(-8)。Adam算法因其有效性和通用性,在神经网络训练中被广泛采用。" 83507639,5814747,JMeter与BeanShell深入解析,"['JMeter', '性能测试', '脚本编程', 'BeanShell']
摘要由CSDN通过智能技术生成

Adam 优化算法(Adam optimization algorithm)
在深度学习的历史上,包括许多知名研究者在内,提出了优化算法,并很好地解决了一些问题,但随后这些优化算法被指出并不能一般化,并不适用于多种神经网络,时间久了,深度学习圈子里的人开始多少有些质疑全新的优化算法,很多人都觉得动量(Momentum)梯度下降法很好用,很难再想出更好的优化算法。

所以RMSprop以及Adam优化算法,就是少有的经受住人们考验的两种算法,已被证明适用于不同的深度学习结构,这个算法我会毫不犹豫地推荐给你,因为很多人都试过,并且用它很好地解决了许多问题。

Adam优化算法基本上就是将Momentum和RMSprop结合在一起,那么来看看如何使用Adam算法。

吴恩达深度学习笔记(45)-Adam 优化算法(Adam optimization)
使用Adam算法,首先你要初始化,v_dW=0,S_dW=0,v_db=0,S_db=0,在第t次迭代中,你要计算微分,用当前的mini-batch计算dW,db,一般你会用mini-batch梯度下降法。

接下来计算Momentum指数加权平均数,所以v_dW=β_1 v_dW+(1-β_1)dW(使用β_1,这样就不会跟超参数β_2混淆,因为后面RMSprop要用到β_2),使用Momentum时我们肯定会用这个

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值