SVM支持向量机(Day6 ①)


        SVM:中文名叫支持向量机,它的基本模型是定义在特征空间上的间隔最大的线性分类器。具体来说就是在线性可分时,在原空间寻找两类样本的最优分类超平面。在线性不可分时,加入松弛变量并通过非线性映射将低维输入空间的样本映射到高维空间使其变为线性可分,这样就可以在该特征空间中寻找最优分类超平面。

        主要思想为找到空间中的一个更够将所有数据样本划开的超平面,并且使得本本集中所有数据到这个超平面的距离最短。     原理:找到离分隔超平面最近的点,确保它们离分隔平面的距离尽可能远

优点

        可以解决高维问题,即大型特征空间;
        解决小样本下机器学习问题;
        能够处理非线性特征的相互作用;
        无局部极小值问题;(相对于神经网络等算法)
        无需依赖整个数据;
        泛化能力比较强;
缺点

        当观测样本很多时,效率并不是很高;
        对非线性问题没有通用解决方案,有时候很难找到一个合适的核函数;
        对于核函数的高维映射解释力不强,尤其是径向基函数;
        常规SVM只支持二分类;
        对缺失数据敏感;

    SVM模型需要选择合适的核函数(Kemel Function),核函数的作用是将非线性的样本分类问题映射到高维空间中,在高维空间中寻找最优分离超平面,来达到将平面上分不开的数据分开的目的。在图4-1中一堆数据原本在二维空间中无法进行划分,而通过核函数映射到三维空间后,就能找到一个超平面来完成数据的分类。

        核函数有以下几种:

1)线性核函数(Linear):K(x,y)=xy,比较简单,计算量较小

2)多项式核函数(Polynomial):,善于全局性学习,但可能出现过拟合现象;

3)高斯核函数(RBF):,局部学习效果好,较为常用;

4)Sigmoid核函数:,满足半正定条件,应用受限制。

        经过实验比对,高斯核函数能够取得比较好的分类效果,本文采用高斯核函数来进行模型的训练。将倒位集合中每个倒位元素看作做高维空间中的一个点,其中倒位结构变异的每个特征代表一个维度。用RBF将INV中的元素映射到倒位特征个数组成的高维空间中,然后在高维空间中训练集得到倒位的最优分离超平面,把得到的模型用于候选倒位的分类。图4-2展示了倒位从二维空间到高维空间的映射过程,图中实心小圆点代表真正的倒位,菱形代表假阳性倒位。

⭐⭐⭐持续更新.....

⭐⭐⭐每天提醒自己,自己就是个菜鸡!

⭐⭐⭐已经看到最后啦,如果对您有帮助留下的每一个点赞、收藏、关注是对菜鸡创作的最大鼓励❀

⭐⭐⭐有相关问题可以写在评论区,一起学习,一起进步

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器人spider

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值