李群李代数

目录

1.为什么要引入李群和李代数?

2.群的定义:

3.常见的群:

4.李群:

5.引出李代数

6.李代数

7.so(3)---->SO(3)的指数映射

8.SO(3) ----> so(3) 对数映射

9.se(3)---->SE(3)的指数映射

参考:


1.为什么要引入李群和李代数?

在slam中,位姿是未知的,我们需要根据观测的数据和输入量去求解位姿,一种典型的方式是把它构建成一个优化问题,求解最优的 R,t,使得误差最小化。

  1. 旋转矩阵自身是带有约束的(正交且行列式为 1),作为优化变量时,会引入额外的约束,使优化变得困难。通过李群—李代数间的转换关系,我们希望把位姿估计变成无约束的优化问题,简化求解方式。
  2. 在优化旋转矩阵或变换矩阵的时候,要对它们求导,然而根据李群的定义,他们对加法是不封闭的(根据求导的定义,需要加一个小量),只对乘法封闭。因此我们考虑能否引入一个东西,来找到其与李群的关系,而且对加法还封闭,这样我们就能用这个来求导,然后映射回李群上。

2.群的定义:

群(Group)是一种集合 加上一种运算 的代数结构。我们把集合记作A ,运算记作 · ,那么群可以记作G =(A,· )。群要求这个运算满足以下几个条件(“封结幺逆”(谐音凤姐咬你)):

3.常见的群:

  • 一般线性群GL(n)=指n×n的可逆矩阵,它们对矩阵乘法成群。
  • 特殊正交群SO(n)也就是所谓的旋转矩阵群,其中SO(2)和SO(3))最为常见。正式的记法是:

  • 特殊欧氏群SE(n)也就是前面提到的nn维欧氏变换,如SE(2)和SE(3)。这里给出SE(3)的记法:

4.李群:

  • 具有连续性质的群。
  • 既是群也是流形。
  • 直观上看,一个刚体能够在空间中连续运动,故SO(3)和SE(3)都为李群。
  • 但是,SO(3)和SE(3)只定义了良好的乘法,没有加法,所以很难进行取极限,求导等操作。

5.引出李代数

任意旋转矩阵R,满足:

R是某个相机的旋转,它会随时间连续地变化,即为时间的函数:R (t ),由于它仍是旋转矩阵,有:

 对两边求时间的导得:

由上式可知左式为一个反对称矩阵,我们可以找到一个三维向量ϕ (t )∈ R3 与之对应,将上公式表示为:

 等式两边右乘R (t ),由于R 为正交阵,有

每对旋转矩阵求一次导数,只需左乘一个ϕ∧ (t )矩阵即可。为方便讨论,我们设t 0 =0,并设此时旋转矩阵为R (0)=I 。按照导数定义,可以把R (t )在0附近进行一阶泰勒展开:

在t 0 附近,设ϕ 保持为常数ϕ (t 0 )=ϕ 0 ,有:

上式是一个关于R 的微分方程,而且知道初始值R (0)=I ,解之,得: 

我们看到,旋转矩阵R 与另一个反对称矩阵ϕ 0 通过指数关系发生了联系。也就是说,当我们知道某个时刻的R 时,存在一个向量ϕ ,它们满足这个矩阵指数关系。

6.李代数

对于SO(3)和SE(3),李代数可定义于李群的正切空间上,描述了李群中元素局部导数的性质,分别把它们记作小写的so(3)和se(3)。首先,给出通用的李代数的定义。

  李代数由一个集合VV,一个数域FF和一个二元运算[][]组成。如果它们满足以下几条性质,称(V,F,[])(V,F,[]) 为一个李代数,记作gg。

从表面上来看,李代数所需要的性质还是挺多的。其中二元运算被称为李括号。相比于群中的较为简单的二元运算,李括号表达了两个集合元素的差异。它不要求结合律,而满足反对称性,以及元素和自己做李括号之后为零的性质。作为类比,三维向量R3上定义的叉积××是一种李括号,因此g=(R3,R,×)构成了一个李代数。读者可以尝试将叉积的性质代入到上面四条性质中。

7.so(3)---->SO(3)的指数映射

利用这两个性质,我们可以把指数映射写成:

最后得到一个熟悉的式子:

它和罗德里格斯公式如出一辄。这表明,so(3) 实际上就是由所谓的旋转向量组成的空间,而指数映射即罗德里格斯公式。通过它们,我们把so(3) 中任意一个向量对应到了一个位于 SO(3) 中的旋转矩阵。

8.SO(3) ----> so(3) 对数映射

其中∨表示从反对称矩阵到向量的对应关系,为∧的逆运算。

不过,通常不按照泰勒展开去计算对数映射,利用迹的性质分别求解转角和转轴来计算对应的李代数,更加省事一些。 

问:指数映射性质如何呢?是否对于任意的 R 都能找到一个唯一的 φ?

很遗憾,指数映射只是一个满射。这意味着每个SO(3) 中的元素,都可以找到一个 so(3) 元素与之对应;但是可能存在多个 so(3) 中的元素,对应到同一个 SO(3)。至少对于旋转角 θ,我们知道多转 360 度和没有转是一样的——它具有周期性。但是,如果我们把旋转角度固定在 ±π 之间,那么李群和李代数元素是一一对应的

9.se(3)---->SE(3)的指数映射

但是∧不再对应到一个反对称关系,而是:

 指数映射为:

左上角的Φ是我们熟知的so(3)中的元素。而右上角的J则可整理为(设ϕ=θa):

参考:

  1. 视觉SLAM中的数学基础 第三篇 李群与李代数

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

火柴的初心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值