文章目录
力学
加速度
角加速度: α = d ω d t = d 2 θ d t 2 \alpha=\frac{ {\rm d}\omega}{ {\rm d}t}=\frac{ {\rm d}^2\theta}{ {\rm d}t^2} α=dtdω=dt2d2θ
法相加速度: a n = v 2 r = w 2 r a_n = \frac{v^2}{r} = w^2r an=rv2=w2r
切向加速度: a t = d v d t = r d θ d t a_t = \frac{ {\rm d}v}{ {\rm d}t} = \frac{r{\rm d}\theta}{ {\rm d}t} at=dtdv=dtrdθ
加速度大小: a = ( a n 2 + a t 2 ) 1 / 2 a = (a^2_n + a^2_t)^{1/2} a=(an2+at2)1/2
加速度方向: tan φ = a n a t \tan\varphi=\frac{a_n}{a_t} tanφ=atan
牛顿定律
第二定律: F ⃗ = d p ⃗ d t = m a ⃗ \vec{F}=\frac{ {\rm d}\vec{p}}{ {\rm d}t}=m\vec{a} F=dtdp=ma
摩擦力: F f = μ F N F_f=\mu F_N Ff=μFN
动量、机械能
冲量: I ⃗ = p ⃗ − p 0 ⃗ \vec{I}=\vec{p}-\vec{p_0} I=p−p0
合外力: F e x ⃗ = d p ⃗ d t \vec{F^{ex}}=\frac{ {\rm d}\vec{p}}{ {\rm d}t} Fex=dtdp
动能定理: ∑ W = ∑ E k − ∑ E k 0 \sum{W}=\sum{E_k}-\sum{E_{k_0}} ∑W=∑Ek−∑Ek0
功能原理: W e x + W n c i n = E − E 0 W^{ex}+W^{in}_{nc}=E-E_0 Wex+Wncin=E−E0
转动定律
力矩: M ⃗ = r ⃗ × F ⃗ \vec{M}=\vec{r}\times\vec{F} M=