物理复习5第二部分

第二部分

变力做功计算(上册P78_3-17)

F ⃗ + P ⃗ = 0 \vec F+\vec P=0 F +P =0
F = m g − k m y F=mg-kmy F=mgkmy
d W = F ⃗ ⋅ d r ⃗ {\rm d}W=\vec F\cdot{\rm d}\vec r dW=F dr
k = 0.2 k g / m k=0.2{\rm kg}/{\rm m} k=0.2kg/m
W = ∫ F ⃗ ⋅ d r ⃗ = ∫ 0 h ( m g − k g y ) d y = ( m g y − 1 2 k g y 2 ) ∣ 0 10 = 882 J W=\int\vec F\cdot{\rm d}\vec r=\int_0^{h}(mg-kgy)dy=\left(mgy-\frac{1}{2}kgy^2\right)|_0^{10}=882{\rm J} W=F dr =0h(mgkgy)dy=(mgy21kgy2)010=882J

平面简谐波的波动方程(上册P167_6-11、6-12)

参考:物理复习2振动、波动

  1. 习题6-11

(1)
平面简谐波向x轴负传播方向
y = A cos ⁡ ( ω t + k x + φ ) y=A\cos(\omega t+kx+\varphi) y=Acos(ωt+kx+φ)
A = 0.10 m A=0.10{\rm m} A=0.10m
ω = 2 π ν = 500 π \omega=2\pi\nu=500\pi ω=2πν=500π
k = 2 π λ = 2 π 20 m = 0.1 π m − 1 k=\frac{2\pi}{\lambda}=\frac{2\pi}{20{\rm m}}=0.1\pi {\rm m}^{-1} k=λ2π=20m2π=0.1πm1
x=0处的质点向下运动,由旋转矢量可判断 φ = π 3 \varphi=\frac{\pi}{3} φ=3π
y = 0.1 cos ⁡ ( 500 π t + 0.1 π x + π 3 ) y=0.1\cos(500\pi t+0.1\pi x+\frac{\pi}{3}) y=0.1cos(500πt+0.1πx+3π)
(2)
y = 0.1 cos ⁡ ( 500 π t + 0.1 π x + π 3 ) y=0.1\cos(500\pi t+0.1\pi x+\frac{\pi}{3}) y=0.1cos(500πt+0.1πx+3π)
x = 7.5 m x=7.5{\rm m} x=7.5m时, y = 0.1 cos ⁡ ( 500 π t + 13 π 12 ) y=0.1\cos(500\pi t+\frac{13\pi}{12}) y=0.1cos(500πt+1213π)
v = d y d t = − 50 π sin ⁡ ( 500 π t + 13 π 12 ) v=\frac{{\rm d}y}{{\rm d}t}=-50\pi\sin(500\pi t+\frac{13\pi}{12}) v=dtdy=50πsin(500πt+1213π)
t = 0 s t=0{\rm s} t=0s v = − 50 π sin ⁡ 13 π 12 = − 40.7 m / s v=-50\pi\sin\frac{13\pi}{12}=-40.7{\rm m/s} v=50πsin1213π=40.7m/s
∴ \therefore 速度方向向下,大小为 40.7 m / s 40.7{\rm m/s} 40.7m/s

  1. 习题6-12

(1)
y = A cos ⁡ ( ω ( t − x u ) + φ ) y=A\cos\left(\omega(t-\frac{x}{u})+\varphi\right) y=Acos(ω(tux)+φ)
A = 0.04 m A=0.04{\rm m} A=0.04m
ω = 2 π ν = 2 π u λ = 0.4 π s − 1 \omega=2\pi \nu=\frac{2\pi u}{\lambda}=0.4\pi{\rm s^{-1}} ω=2πν=λ2πu=0.4πs1
u = 0.08 m / s u=0.08{\rm m/s} u=0.08m/s
φ = 3 π 2 \varphi=\frac{3\pi}{2} φ=23π
y = 0.04 cos ⁡ ( 0.4 π ( t − x 0.08 ) − π 2 ) y=0.04\cos\left(0.4\pi(t-\frac{x}{0.08})-\frac{\pi}{2}\right) y=0.04cos(0.4π(t0.08x)2π)
(2)
x = 0.20 m x=0.20{\rm m} x=0.20m
y = 0.04 cos ⁡ ( 0.4 π t + π 2 ) y=0.04\cos\left(0.4\pi t+\frac{\pi}{2}\right) y=0.04cos(0.4πt+2π)

杨氏双缝干涉、光程差(下册P167_例题2、P207_14-13)

  1. 例题2

(1)
云母片覆盖在S1上后,光程1变长,故中心明条纹向上移动,即干涉条纹向上移动
(2)
计算光程差: Δ = ( n − 1 ) e \Delta=(n-1)e Δ=(n1)e
( n − 1 ) e = k λ (n-1)e=k\lambda (n1)e=kλ
k = ( n − 1 ) e λ = 0.58 × 6.6 × 1 0 − 6 m 5.5 × 1 0 − 7 m ≈ 7 k=\frac{(n-1)e}{\lambda}=\frac{0.58\times6.6\times10^{-6}{\rm m}}{5.5\times10^{-7}{\rm m}}\approx7 k=λ(n1)e=5.5×107m0.58×6.6×106m7
∴ \therefore 中央O点为明文。

  1. 习题14-13

(1)
条纹向上移动
(2)
Δ = ( n − 1 ) d \Delta=(n-1)d Δ=(n1)d
( n − 1 ) d = k λ (n-1)d=k\lambda (n1)d=kλ
d = k λ n − 1 = 5 × 5.5 × 1 0 − 7 m 0.58 = 4.7 × 1 0 − 6 m d=\frac{k\lambda}{n-1}=\frac{5\times5.5\times10^{-7}{\rm m}}{0.58}=4.7\times10^{-6}{\rm m} d=n1kλ=0.585×5.5×107m=4.7×106m

均匀带电球面的电场分布和电势计算(下册P17_例题2、P28_例题3)

  • 电场中的高斯定理: Φ e = ∮ s E ⃗ ⋅ d S ⃗ = q ε 0 \Phi_e=\oint_s\vec E\cdot{\rm d}\vec S=\frac{q}{\varepsilon_0} Φe=sE dS =ε0q
  • 电势: V A = ∫ A B E ⃗ ⋅ d l ⃗ + V B V_A=\int_{AB}\vec E\cdot{\rm d}\vec l+V_B VA=ABE dl +VB
  • 某一点A的电势 V A V_A VA,在数值上等于把单位正试验电荷从点A移到无穷远处时,静电场所做的功: V A = ∫ A ∞ E ⃗ d l ⃗ V_A=\int_{A\infty}\vec E{\rm d}\vec l VA=AE dl
  • 点电荷电场的电势: V = ∫ r ∞ E ⃗ ⋅ d l ⃗ = q 4 π ε 0 1 r V=\int_r^{\infty}\vec E\cdot{\rm d}\vec l=\frac{q}{4\pi\varepsilon_0}\frac{1}{r} V=rE dl =4πε0qr1
  1. 例题2

Φ e = ∮ s E ⃗ ⋅ d S ⃗ = q ε 0 \Phi_e=\oint_s\vec E\cdot{\rm d}\vec S=\frac{q}{\varepsilon_0} Φe=sE dS =ε0q
(1) 在球面内部:
∑ q = 0 \sum q=0 q=0
E = 0 E=0 E=0
(2) 在球面外部:
E 4 π r 2 = Q ε 0 E4\pi r^2=\frac{Q}{\varepsilon_0} E4πr2=ε0Q
E = Q 4 π ε 0 r 2 , ( r > R ) E=\frac{Q}{4\pi\varepsilon_0r^2}, (r>R) E=4πε0r2Q,(r>R)

  1. 例题3

(1) 球壳外两点间的电势差:
E = Q 4 π ε 0 r 2 E=\frac{Q}{4\pi\varepsilon_0r^2} E=4πε0r2Q
V A − V B = ∫ r A r B E ⃗ d r ⃗ = Q 4 π ε 0 ∫ r A r B d r r 2 = Q 4 π ε 0 ( 1 r A − 1 r B ) V_A-V_B=\int_{r_A}^{r_B}\vec E{\rm d}\vec r=\frac{Q}{4\pi\varepsilon_0}\int_{r_A}^{r_B}\frac{{\rm d}r}{r^2}=\frac{Q}{4\pi\varepsilon_0}(\frac{1}{r_A}-\frac{1}{r_B}) VAVB=rArBE dr =4πε0QrArBr2dr=4πε0Q(rA1rB1)
(2) 球壳内两点间的电势差:
E = 0 E=0 E=0
V A − V B = ∫ r A r B E ⃗ d r ⃗ = 0 V_A-V_B=\int_{r_A}^{r_B}\vec E{\rm d}\vec r=0 VAVB=rArBE dr =0
(3) 球壳外任意点的电势:
r B → ∞ r_B\rightarrow\infty rB
V ( r ) = Q 4 π ε 0 r , ( r > R ) V(r)=\frac{Q}{4\pi\varepsilon_0r}, (r>R) V(r)=4πε0rQ,(r>R)
(4) 球壳内任意点的电势:
V ( R ) = Q 4 π ε 0 R V(R)=\frac{Q}{4\pi\varepsilon_0R} V(R)=4πε0RQ
V i n = V ( R ) = Q 4 π ε 0 R V_{in}=V(R)=\frac{Q}{4\pi\varepsilon_0R} Vin=V(R)=4πε0RQ

动生电动势计算(下册P119_例题1、P144_12-13)

  • E = ∫ O P ( v ⃗ × B ⃗ ) d l ⃗ E=\int_{OP}(\vec v\times\vec B){\rm d}\vec l E=OP(v ×B )dl
  1. 例题1

E = ∫ O P ( v ⃗ × B ⃗ ) d l ⃗ = ∫ O P v B d l = ω B ∫ 0 L l d l = 1 2 ω B L 2 E=\int_{OP}(\vec v\times\vec B){\rm d}\vec l=\int_{OP}vB{\rm d}l=\omega B\int_0^Ll{\rm d}l=\frac{1}{2}\omega BL^2 E=OP(v ×B )dl =OPvBdl=ωB0Lldl=21ωBL2

  1. 习题12-13
    参考:物理复习3电磁学

使用安培环路定理求磁场强度
∮ B ⃗ d l ⃗ = μ 0 I \oint\vec B{\rm d}\vec l=\mu_0I B dl =μ0I
B = μ 0 I 2 π r B=\frac{\mu_0I}{2\pi r} B=2πrμ0I
求电动势
E = ∫ A B ( v ⃗ × B ⃗ ) d r ⃗ = − v ∫ μ 0 I 2 π r d r = − μ 0 I v 2 π ∫ 0.1 m 1.1 m 1 r d r = − 3.84 × 1 0 − 5 V E=\int_{AB}(\vec v\times\vec B){\rm d}\vec r=-v\int\frac{\mu_0I}{2\pi r}{\rm d}r=-\frac{\mu_0Iv}{2\pi}\int_{0.1{\rm m}}^{1.1{\rm m}}\frac{1}{r}{\rm d}r=-3.84\times10^{-5}V E=AB(v ×B )dr =v2πrμ0Idr=2πμ0Iv0.1m1.1mr1dr=3.84×105V

物理复习1力学
物理复习2振动、波动
物理复习3电磁学
物理复习4近代物理
物理复习基本公式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值