卷积神经网络的一些细节思考(卷积、池化层的作用)

本文探讨卷积神经网络(CNN)的核心特性——组合性和局部不变性,阐述卷积核如何提取特征,池化层如何实现平移、旋转和尺度不变性。同时,解释了池化层在降低模型过拟合中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卷积神经网络由卷积核来提取特征,通过池化层对显著特征进行提取,经过多次的堆叠,得到比较高级的特征,最后可以用分类器来分类。这是CNN的一个大概流程,其具体实现的结构是丰富多样的,但总的思想是统一的。


CNN整个的计算过程,最重要的有两点:组合性和局部不变性(平移、旋转、尺度放缩)。

组合性:

每个卷积核可以看做某种特征的提取器。所谓组合性就是将卷积核提取的一些简单特征进行组合,得到更高级的特征。比如图像的人脸分类:

第一个卷积层,可能只是从原始图像像素中学习到一些边缘特征,第二个卷积层可以从这些边缘特征中探测到简单的形状特征,然后接下来的卷积层,就可以用这些简单的形状特征探测到更高级的特征。比如人脸的形状。

局部不变性:

所谓局部不变性,比如图像,就是图像经过简单的平移、旋转、尺度放缩,池化层在相同的位置依旧可以提取到相同的特征。是的,这是池化层完成的任务。那么怎么样理解不变性呢,为了方便理解,如下图示例(来源知乎):

(1)平移不变性:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值