Multi-view Inference for Relation Extraction with Uncertain Knowledge
我们提出了 MIUK,这是一种用于使用不确定知识进行关系提取的多视图推理框架。我们的工作是将不确定的知识图谱
引入关系提取和调查提及、实体和概念之间的相互作用的开创性研究。 • 我们进行了广泛的实验来验证 MIUK 并在句子级和文档级关系提取任务上取得有竞争力的结果。 • 我们构建并发布了一个包含超过 15,000,000 个实体和概念的高质量描述的语料库。它可以作为关系提取和许多其他自然语言处理任务的宝贵外部知识资源。
输入信息:三部分:输入文档(上下文)、不确定的知识图谱(ProBase)和来自维基百科的描述(ProBase Desp)
1. mention embedding
m is calculated by averaging the embeddings of its anchor token and all the words existing in the mention
嵌入 m 是通过平均其锚标记的嵌入和提及中存在的所有单词来计算的
2. the concept vector c
对于目标实体 e,MIUK 首先从 ProBase 中检索前 K 个概念 c1、c2、…、ck 及其对应的置信度分数。然后应用softmax操作将置信度分数转换为加权分数w1,w2,…,wk,其中Pk i=1 wi = 1,因为ProBase提供的置信度分数是频率计数。
• Non-weighting Integration (NWI)
• Attention-based Weighting Integration (AWI)
• Prior Knowledge-based Weighting Integration (PWI). w是weight。
3. Concept2Entity Links:
Concept2Entity links (C2E) 通过聚合实体描述向量 ed 和概念向量 c 来生成全局交互向量 ug。 their corresponding description vectors are denoted as hd and td
4. Information Aggregation and Mixed Attention Mechanism
图 1:文档级关系提取的三视图推理框架示例。在一个文档中,一个实体可能有很多提及,通常以不同的形式出现。对于给定的实体,本地交互表示由不同的提及表示聚合。这是提及视图和实体视图之间的交叉视图交互。此外,通过检索不确定的KG,使用概念和加权分数来产生概念表示,它将收集实体和概念的描述以获得全局交互表示。这是实体视图和概念视图之间交互的交叉视图。最后,实体视图用于上下文信息聚合和关系预测。句子级关系提取仅涉及实体视图和概念视图。该图以彩色显示更好。