相似度衡量(需复现):苏剑林博客2:Unsupervised Opinion Summarization Using Approximate Geodesics

该博客探讨了无监督意见摘要的方法,关注于如何优化语义表示向量和计算相对距离。核心思想包括利用字典学习改进预训练模型的语义表示,并通过KNN图和Dijkstra算法估算向量间距离,以生成摘要。
摘要由CSDN通过智能技术生成

Unsupervised Opinion Summarization Using Approximate Geodesics

评述

我觉的这篇论文可以细细研读,针对比较关心的几个问题,给了解决方案,在各向异性,在语义表示上,都提出了一些改进。我觉得可以。
可以作为复现论文之一。

论文围绕两个问题:
1 如何获得较好的语义表示向量?(传统预训练语言模型具有各向异性)
2 如何测算语义表示向量之间的相对距离?(基于统计的方法和基于语义的方法)

introduction

opinion summary:自动化的生成准备的summary从线上用户的评论中。一般是基于无监督的方法。(无标注数据的原因)
大致分为两种,一种是general summary,即选择最佳的能够表示sentences集合的摘要。 select the best repersents popular opinions of the set of sentences;另一种是aspect summary,是选择每一方面下最佳的句子表示。 a repersentatibe sentence about a specific aspect.

Core idea

2.1 背景知识

字典学习?字典学习是学习稀疏表示的过程。
假设已有N张稀疏的图像

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YingJingh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值