1、响应时间:
响应时间定义为“用户响应时间”,
响应时间可以分解成:
页面服务端响应时间可分为网络传输时间(N1+N2+N3+N4)和应用延迟时间(A1+A2+A3),而应用延迟时间又可以分解为数据库延迟时间(A2)和应用服务器延迟时间(A1+A3),对响应时间进行分解,目的更容易定位性能瓶颈(响应时间长,说明是有性能问题,具体问题在哪要在进行分析)。
在进行性能测试时,合理的响应时间取决于实际的用户需求,而不能依据测试人员的设想来决定
2、并发用户数
在同一时间段内访问系统的用户数量,也就是我们所说并发用户数的一个概念,这种并发的概念通常在性能测试方法中使用,用于业务的角度模拟真实的用户访问,体现的是业务并发用户数。
还一种概念,不从业务角度出发,而是从服务端承受的压力出发,描述的是同时向客户端发出请求的客户,该概念结合并发测试使用,体现的是服务端承受的最大并发访问数。
日志分析法:是指通过对应用服务器的日志进行分析,从而了解系统用户的使用状态,从日志中计算得出服务器承受的最大并发用户数。这种方式得到的数据准确度和可信度都比较高,对于internet应用等无法估计用户数量和用户行为模式的应用
3、吞吐量
吞吐量直接体现软件系统的性能承载能力,是指单位时间内系统处理的客户请求的数量
对于交互式应用,用户直接的体验是“响应时间”,通过“并发用户数”和“响应时间”可以确定系统的性能规划;但对于非交互式应用,用“吞吐量”来描述用户对系统性能的期望可能更加合理。
对于交互式应用来说,吞吐量指标反映的是服务器承受的压力,在容量规划测试中,吞吐量是一个重点关注的指标,因为它能够说明系统级别的负载能力;在性能调优的过程中,吞吐量指标也有重要的价值,empirix公司在报告中声称,在他们所发现的性能问题中,有80%是因为吞吐量的限制导致的。
对web系统的性能测试过程中,吞吐量主要以请求书(单击数)/秒、页面数/秒或字节数/秒来体现,吞吐量指标可以在两个方面发挥作用
1、用于协助设计性能测试场景,以及衡量性能测试场景是否达到了预期的设计目标,在设计性能测试场景时,吞吐量可被用于协助设计性能测试场景,根据估算的吞吐量数据,可以对应到测试场景的事务发生频率、事务发生次数等。另外,在测试完成后,根据实际的吞吐量可以衡量测试是否达到了预期的目标
2、用于协助分析性能瓶颈。吞吐量的限制是性能瓶颈的一种重要表现形式,因此,有针对性地对吞吐量设计测试,有助于尽快定位到性能瓶颈所在位置,吞吐量测试的RBI方法。
不同方式表达的吞吐量可以说明不同层次的问题:
以字节数/秒方式表示的吞吐量主要受网络基础设施、服务器架构、应用服务器制约;
以单击数/秒方式表示的吞吐量主要受应用服务器和应用代码的制约
4、性能计数器(资源利用率)
性能计数器是描述服务器或操作系统性能的一些数据指标。例如,Windows来说,内存数和进程时间等都是常见的计数器;计数器在性能测试中发挥着监控和分析的关键作用,尤其分析系统的可扩展性、进行性能瓶颈的定位时,对计数器取值的分析非常关键。但必须说明的是,单一的性能计数器只能体现系统性能的某一方面,对性能测试结果的分析必须基于多个不同的计数器。
5、思考时间
思考时间,也称休眠时间,从业务的角度来说,该时间指的是用户在进行操作时,每个请求之间的间隔时间。
不少性能测试工程师在实际应用中都对如何给定合适的思考时间存在疑问,这里给出一个计算思考时间的一般办法
1、首先计算出系统的并发用户数
2、统计出系统平均的吞吐量
3、统计出平均用户发出的请求数量
4、根据公式
计算出思考时间。
为了更加符合用户操作的实际情况,所以考虑思考时间,以这个时间为基准,让思考时间在一定幅度内随机变动