【机器学习】隐马尔科夫模型(下)——学习算法和预测算法

本文深入探讨了隐马尔科夫模型(HMM)的学习算法,重点介绍了Baum-Welch算法作为HMM参数学习的近似解决方案,并详细阐述了其在EM算法框架下的应用。此外,还讨论了预测算法,特别是Viterbi算法用于找出给定观测序列的最可能隐藏状态序列。最后,提供了代码实现和测试案例以展示算法的应用。
摘要由CSDN通过智能技术生成

紧接上篇博客,上文已经介绍了前向-后向算法。前向-后向算法是通过递推地计算前向-后向概率来高效地进行隐马尔可夫模型的概率计算。该算法的时间复杂度是 O(N2T)

五、学习算法
在很多实际的情况下,HMM 不能被直接地判断,这就变成了一个学习问题。因为对于给定的可观察状态序列 O 来说,没有任何一种方法可以精确地找到一组最优的 HMM 参数 λ 使 P(O|λ) 最大,于是人们寻求使其局部最优的解决办法,而Baum-Welch算法就成了HMM学习问题的一个近似的解决方法。
Baum-Welch算法首先对于HMM的参数进行一个初始的估计,但这个很可能是一个错误的猜测,然后通过对于给定的数据评估这些参数的的有效性(比如交叉验证)并减少它们所引起的错误来更新HMM参数,使得和给定的训练数据的误差变小。
实际上,Baum-Welch算法是EM算法的一个特例。EM算法是解决无监督学习问题的一把“利器”。下面我们就使用这把“利器”解决HMM的参数学习问题。

1.首先我们需要定义两个辅助变量,这两个变量可以用前文介绍过的前向概率和后向概率进行定义。
(1)给定模型 λ 和观测序列 O ,在时刻 t 处于 qi 的概率,记为

γt(i)=P(it=qi|O,λ)

可以通过前向-后向概率计算,事实上
γt(i)=P(it=qi|O,λ)=P(it=qi,O|λ)P(O|λ)

根据前向概率和后向概率的定义可知: αt(i)βt(i)=P(it=qi,O|λ) ,于是得到:
γt(i)=αt(i)βt(i)P(O|λ)=αt(i)βt(i)Nj=1αt(j)βt(j)

(2)给定模型 λ 和观测序列 O ,在时刻 t 处于状态 qi 且在时刻 t+1 处于状态 qj 的概率,记为
ξt(i,j)=P(it=qi,it+1=qj|O,λ)

通过前向-后向概率计算得:
ξt(i,j)=αt(i)a
  • 2
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值