隐马尔可夫模型的计算

本文详细介绍了隐马尔可夫模型(HMM)的计算过程,包括估值问题、解码问题和学习问题。在估值问题中,通过向前算法计算特定观测序列的概率。解码问题解决给定观测序列下最可能的隐藏状态序列。学习问题则涉及通过向前-向后算法和Baum-Welch算法更新模型参数。文章提供了算法示例和解释,揭示了HMM在模式分类、机器学习和自然语言处理中的应用。
摘要由CSDN通过智能技术生成

隐马尔可夫模型的计算

标签: 模式分类

@author lancelot-vim


约定一些新的术语,并且将重新整理记号系统。通常把隐马尔可夫模型图称为有限状态机(finite state machine, FSM),如果网络内部得转移都和概率相关,那么这样得网络叫做马尔可夫网络。这种网络是严格符合因果关系的,因为下一时刻状态的概率,之和上一时刻状态有关,如果只要选择好相应得合适得初始状态,每个特定得状态发生得概率都非0,那么这个马尔可夫模型就被成为”各态历经”的。最终状态或者吸收状态(final state or absorbing state)只系统一旦进入这个状态,就无法里还的情况(比如 a00=1 ,则系统永远处于初始状态)

前文提到,用 aij 来表示隐状态之间得转移概率,用 bjk 表示发出可见状态得概率:

  • aij=P(wj(t+1)|wi(t))
  • bjk=P(vk(t)|wj(t))

我们要求在每一时刻都必须准备好转移到下一时刻,同时要发出一个可见的符号,这样有归一化条件:

jaij=1kbjk=1

定义了这些术语后,使得我们可以关注下列3个隐马尔可夫模型得核心问题:

  1. 估值问题:假设我们有一个HMM,其转移概率 aij bjk 已知,计算这个模型某一特定观测序列 VT 得概率
  2. 解码问题:假设我们已有一个HMM,和一个观测序列,决定最有可能产生这个观测序列得隐形状态序列 wT
  3. 学习问题:假设我们知道一个HMM的大致结构(隐形状态参数数量、可见参数数量)如何从观测中得到 aijbjk

估值问题

一个模型产生可见序列 VT 得概率为: P(VT)=r=1rmaxP(VT|wTr)P(wTr)
其中的r是每个特定长T的隐状态序列得下标: wTr={ w(1),w(2), ... ,w(T)} , 在c个不同隐状态下的情况下,为了计算这个特定可见状态序列 VT 得概率,我们必须考虑每一种可能得隐状态序列,计算它们各自产生可见状态序列 VT 的概率,然后进行相加,所以序列概率就是对应得转移概率 aij 和产生可见符号概率 bjk 的乘积。

由于这里处理的是一阶马尔可夫过程,所以公式可以写为: P(wTr)=t=1TP(w(t)|w(t1)) ,也就是序列中的转移概率依次相乘,在上式中, w(T)=w0 为最终的吸收概率,其产生的唯一得独特可见符号为 v0 ,在语音识别中, w0 往往代表一个空状态,或者没有发声音的状态,符号 v0 就表示静音

由于已经假设可见符号的概率只依赖于这个时刻所处得隐状态,因此, P(VT|wTr)=t=1TP((v(t)|w

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值