记一次生产redis序列化与反序列化问题
org.springframework.data.redis.serializer.SerializationException: Cannot deserialize; nested exception is org.springframework.core.serializer.support.SerializationFailedException: Failed to deserialize payload. Is the byte array a result of corresponding serialization for DefaultDeserializer?; nested exception is java.io.StreamCorruptedException: invalid stream header: 39395F33
错误提示:序列化对象生成这个字节数组的方法是否与默认的反序列化方法相对应。

原因在于之前存到redis中的value序列化方式与取出来时反序列化的方式不一致导致。
查看报错代码第74行,为:
String ver = (String) redisService.get(name);
实现方式为:

这里采用redis配置类,来指定redisTemplate序列化的方式。
修改前:
修改前指定的序列化方式为JdkSerializationRedisSerializer()

修改后:
修改后改为StringRedisSerializer()。

原因其实挺简单,就是存入redis的序列化方式为StringRedisSerializer,在读取的时候,调用的是get方法,而get方法必须经过redistemplate的deserialize。
反序列化的方式必须与序列化的方式一致,否则解析失败报异常。
在此之前测试环境没有复现这个问题,原因在于新系统测试环境的redis集群是新搭建的,存入与获取数据均采用默认JdkSerializationRedisSerializer序列化与反序列化的方式,而生产环境中的redis集群对接的老系统,之前采用默认的String类型的序列化存储,在对接的过程中忽略了这个问题,导致生产上异常。以此为戒。
另外在排查生产问题时,根据第一步报错指示可以大概了解问题的原因与描述,再通过下面的错误提示定位到具体报错的那行代码,依次往上可以找到问题发生后系统运行的每一步异常与错误,直至抛出异常或报错。这样的习惯对于基础薄弱的同学可以快速定位问题根源,快速排查解决问题。
最后比较一下StringRedisSerializer与JdkSerializationRedisSerializer的区别:
1. StringRedisSerializer
字符串编码,数据以string存储。
当数据存储到Redis的时,键(key)和值(value)都是通过Spring提供的Serializer序列化到数据库的。。
2. JdkSerializationRedisSerializer
使用JDK的序列化手段(serializable接口,ObjectInputStrean,ObjectOutputStream),数据以字节流存储。
使用JDK提供的序列化功能。 优点是反序列化时不需要提供类型信息(class),但缺点是需要实现Serializable接口,还有序列化后的结果非常庞大,是JSON格式的5倍左右,这样就会消耗redis服务器的大量内存。
RedisTemplate默认使用的是JdkSerializationRedisSerializer,StringRedisTemplate默认使用的是StringRedisSerializer。
RedisTemplate中需要声明4种serializer,默认为“JdkSerializationRedisSerializer”:
1) keySerializer :对于普通K-V操作时,key采取的序列化策略;
2) valueSerializer:value采取的序列化策略;
3) hashKeySerializer: 在hash数据结构中,hash-key的序列化策略;
4) hashValueSerializer:hash-value的序列化策略。
1) keySerializer :对于普通K-V操作时,key采取的序列化策略;
2) valueSerializer:value采取的序列化策略;
3) hashKeySerializer: 在hash数据结构中,hash-key的序列化策略;
4) hashValueSerializer:hash-value的序列化策略。
无论如何,建议key/hashKey采用StringRedisSerializer。