基于卷积神经网络(CNN)的手写数字识别

基于卷积神经网络(CNN)的手写数字识别
matlab代码,要求2018版本及以上

基于卷积神经网络(CNN)的手写数字识别一直是深度学习领域的经典应用之一。近年来,在深度学习算法不断发展的趋势下,手写数字识别的准确度得到了巨大的提高。而本文将要讨论的是关于基于卷积神经网络的手写数字识别的matlab实现,要求2018版本及以上。

首先,我们需要了解卷积神经网络在图像识别中的作用。卷积神经网络通常由输入层、卷积层、池化层、全连接层和输出层组成。其中,输入层接收到原始图像数据,卷积层使用一系列滤波器进行特征提取,池化层则将提取出的特征进行采样,最后通过全连接层将特征进行分类并输出结果。通过卷积神经网络可以将输入的手写数字图像经过一系列的处理后,输出对应的数字结果。

在matlab中实现基于卷积神经网络的手写数字识别,我们首先需要准备好用于训练和测试的手写数字图像数据集。在这里,我们可以使用MNIST数据集,它包含了60000张训练图片和10000张测试图片,每张图片的大小为28x28像素。可以通过matlab实现数据集导入和预处理,并将其转换为适合神经网络训练的形式。

接着,我们需要定义好卷积神经网络的结构。在matlab中,使用了深度学习工具箱,可以轻松地创建我们所需的卷积神经网络结构。针对手写数字识别,我们可以采用经典的LeNet-5结构,该结构包含2个卷积层、2个池化层和3个全连接层,是一个相对简单的结构。在实践过程中,我们可以根据实际需求来进行结构设计和调整,以达到更好的效果。

在网络结构定义完成后,我们需要进行模型训练。在matlab中,可以使用trainNetwork函数来进行网络的训练。在训练过程中,我们需要注意参数的选择和调整,如学习率、批次大小等。同时,需要关注到过拟合的问题,并采取相应的措施,如加入正则化项等。

最后,我们需要进行测试并评估模型的准确度。在matlab中,使用classify函数可以对输入的手写数字图像进行分类,并输出对应的数字结果。在测试过程中,可以利用准确率等指标来评估模型的性能,并通过可视化的方式展示结果。

综上所述,基于卷积神经网络的手写数字识别在matlab中的实现,需要注意到数据集的处理、网络结构的定义、模型训练的调整和参数选择,以及模型的评估和可视化展示。只有在这些方面综合考虑和实践,才能获得精确度和泛化性能都比较好的手写数字识别模型,从而为相关应用提供更好的支持和服务。

相关代码,程序地址:http://lanzouw.top/643978611112.html
 

  • 7
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要实现CNN字符识别,可以按照以下步骤进行: 1. 准备数据集:下载MNIST数据集并进行预处理,将图像转换为张量并进行归一化处理。 2. 定义模型:使用PyTorch构建CNN模型,包括卷层、池化层、全连接层等。 3. 训练模型:定义损失函数和优化器,并使用训练集对模型进行训练。 4. 评估模型:使用测试集对模型进行评估,计算准确率等指标。 5. 使用模型:使用训练好的模型对新的字符图像进行识别。 以下是一个简单的CNN字符识别的PyTorch代码示例: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 定义数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # 加载数据集 train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform) test_dataset = datasets.MNIST('data', train=False, download=True, transform=transform) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2)) x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2)) x = x.view(-1, 320) x = nn.functional.relu(self.fc1(x)) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) model = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练模型 def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # 评估模型 def test(): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) # 加载数据集 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1000, shuffle=True) # 训练模型 for epoch in range(1, 11): train(epoch) test() ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值