PAT 1069. The Black Hole of Numbers (20)

For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the "black hole" of 4-digit numbers. This number is named Kaprekar Constant.

For example, start from 6767, we'll get:

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...

Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.

Input Specification:

Each input file contains one test case which gives a positive integer N in the range (0, 10000).

Output Specification:

If all the 4 digits of N are the same, print in one line the equation "N - N = 0000". Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.

Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:

2222 - 2222 = 0000

简单的模拟题

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
int main()
{
  int n;
  cin>>n;
  int m = n;
  vector<int> v(4,0);
  for(int i = 0; i < 4; i++)
  {
    v[i] = m % 10;
    m /= 10;
  }
  sort(v.begin(),v.end());
  int A = 0,B = 0;
  for(int i = 3; i >= 0; i--)
  {
    A = A * 10 + v[i];
  }
  for(int i = 0; i < 4; i++)
  {
    B = B * 10 + v[i];
  }
  if(A - B == 0)
  {
    printf("%04d - %04d = 0000\n",A,B);
    return 0;
  }
  int res = -1;
  while(A - B != res)
  {
    printf("%04d - %04d = %04d\n",A,B,A-B);
    res = A - B;
    A = B = 0;
    m = res;
    for(int i = 0; i < 4; i++)
    {
      v[i] = m % 10;
      m /= 10;
    }
    sort(v.begin(),v.end());
    for(int i = 3; i >= 0; i--)
    {
      A = A * 10 + v[i];
    }
    for(int i = 0; i < 4; i++)
    {
      B = B * 10 + v[i];
    }
  }
  return 0;
}


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Hickey_Chen/article/details/79959810
文章标签: PAT numbers
上一篇PAT 1064. Complete Binary Search Tree (30)
下一篇PAT 1070. Mooncake (25)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭