PAT 1069. The Black Hole of Numbers (20)

For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the "black hole" of 4-digit numbers. This number is named Kaprekar Constant.

For example, start from 6767, we'll get:

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...

Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.

Input Specification:

Each input file contains one test case which gives a positive integer N in the range (0, 10000).

Output Specification:

If all the 4 digits of N are the same, print in one line the equation "N - N = 0000". Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.

Sample Input 1:
6767

Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174

Sample Input 2:
2222

Sample Output 2:

2222 - 2222 = 0000

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
int main()
{
int n;
cin>>n;
int m = n;
vector<int> v(4,0);
for(int i = 0; i < 4; i++)
{
v[i] = m % 10;
m /= 10;
}
sort(v.begin(),v.end());
int A = 0,B = 0;
for(int i = 3; i >= 0; i--)
{
A = A * 10 + v[i];
}
for(int i = 0; i < 4; i++)
{
B = B * 10 + v[i];
}
if(A - B == 0)
{
printf("%04d - %04d = 0000\n",A,B);
return 0;
}
int res = -1;
while(A - B != res)
{
printf("%04d - %04d = %04d\n",A,B,A-B);
res = A - B;
A = B = 0;
m = res;
for(int i = 0; i < 4; i++)
{
v[i] = m % 10;
m /= 10;
}
sort(v.begin(),v.end());
for(int i = 3; i >= 0; i--)
{
A = A * 10 + v[i];
}
for(int i = 0; i < 4; i++)
{
B = B * 10 + v[i];
}
}
return 0;
}