使用 golang xml 标准库转换 SeaShips(7000) 数据集 标注文件格式 到 YOLO数据格式

本文介绍如何利用Golang的xml标准库将包含7000张图片的SeaShips数据集的标注文件转换为YOLO格式,以供Yolov4训练目标检测模型使用。通过160行代码实现转换,并提供了转换后标注文件的验证方法。
摘要由CSDN通过智能技术生成

使用 golang xml 标准库 160 行代码转换 7000 张图片的标注文件。

rect => <object-class> <x_center> <y_center> <width> <height>

SeaShips 标注文件

最近需要使用 yolov4 训练该数据集,然后输出一个船舶识别数据模型,所以写了一个小小工具来进行标注文件格式转换。转换后的效果可以使用上次写的标注工具查看一下。

在这里插入图片描述

package main

import (
	"encoding/xml"
	"flag"
	"fmt"
	"log"
	"os"
	"strings"
)

// 定义一些 xml 结构和 SeaShips(7000) 数据集对应
type Size struct {
	Width int `xml:"width"`
	Height int `xml:"height"`
	Depth int `xml:"depth"`
}

type BndBox struct {
	Xmin int `xml:"xmin"`
	Ymin int `xml:
### 回答1: Seaships数据集包含三个类别:货船、油轮和渔船。货船指的是运输大量货物的船只,油轮指的是用来输送大量液态石油或其它化学品的船只,而渔船是专门用来捕捞海产品的船只。这三个类别分别代表了不同的功能和用途,也展现出了海上运输和经济活动的多样性和重要性。Seaships数据集通过对这三种不同类型的船只进行分类,可以为监测海上运输、经济和环境等方面的研究提供有力的数据支持。同时,该数据集还可以为计算机视觉和机器学习领域的研究提供有价值的基础数据,促进相关技术的发展和应用。 ### 回答2: Seaships数据集是一个用于目标检测数据集,其中包含的是海上船只的图像和相应的标注信息。这个数据集主要的目的是训练和测试船只目标检测算法的性能。 这个数据集一共包含19个类别的目标,分别是“货轮”,“油轮”,“集装箱船”,“工作船”,“拖船”,“货船”,“钢材船”,“巨型油轮”,“客船”,“油船”,“快船”,“抗洪船”,“拖船及货船”,“远洋拖轮”,“航母”,“海监船”,“渔船”,“运输船”和“其他船舶”。 每个类别的目标都有多种不同的形状、尺寸和角度,这使得Seaships数据集适合用于训练和测试船只目标检测算法的鲁棒性和准确性。对于想要研究或应用于航海、海洋环境、水上交通等领域的算法和产品的研究者来说,这个数据集是宝贵的资源。 ### 回答3: Seaships(海船)数据集包含各种类型的海洋船只,包括货船、油轮、航空母舰、巡洋舰、驱逐舰等。数据集中的每个类别都有不同的特征和功能,例如货船主要用于运输物品,油轮主要用于海上石油运输,航空母舰用于航空作战,巡洋舰用于海上巡逻和打击,驱逐舰用于海上护航和反潜。在应用中,可以使用这些类别来训练船只分类的模型,以识别不同类别的船只。此外,数据集还包含每个船只的颜色,方向,速度和角度等属性,这些属性可用于构建船舶路径预测模型或船只目标跟踪等应用。Seaships数据集对于海洋航运相关的研究和应用具有重要价值。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值