摄影系列——构图

关于摄影,我想最基本的是构图,任何一幅优秀的摄影作品,拍摄之前都应先考虑其构图方式,并且只有构图合理了,作品才有进一步创作的价值和空间。

什么是构图?

构图最初的概念来源于西方的美术,那些艺术家在创作自己作品的时候通常会先对画面对象组合进行设计,包括对象之间的平衡以及整体画面的试点安排。现在指作品中艺术形象的结构配置方法。它是造型艺术表达作品思想内容并获得艺术感染力的重要手段。在视觉艺术中常用的技巧和术语,特别是绘画,平面设计与摄影中。

目的:

在摄影领域,研究构图可以使摄影者处理好所拍摄画面的空间关系 - 三维空间即高,宽,深之间的关系,从而突出拍摄主题,增强作品纪实效果与艺术效果的目的。

原则:

构图的基本原则是:均衡与对称,对比和视点。

构图技巧:

均衡式构图:给人以满足的感觉,画面结构完美无缺,安排巧妙,对应而平衡。常用于月夜、水面、夜景等题材。
对称式构图:具有平衡、稳定、相对的特点。缺点:呆板、缺少变化。常用于表现对称的物体、建筑、特殊风格的物体。
变化式构图:景物故意安排在某一角或某一边,能给人以思考和想象,并留下进一步判断的余地。富于韵味和情趣。常用于山水小景、体育运动、艺术摄影、幽默照片等。
对角线构图:把主体安排在对角线上,能有效利用画面对角线的长度,同时也能使陪体与主体发生直接关系。富于动感,显得活泼,容易产生线条的汇聚趋势,吸引人的视线,达到突出主体的效果(例如聚光灯照射主体)。
X形构图:线条、影调按X形布局,透视感强,有利于把人们视线由四周引向中心,或景物具有从中心向四周逐渐放大的特点。常用于建筑、大桥、公路、田野等题材。
紧凑式构图:将景物主体以特写的形式加以放大,使其以局部布满画面,具有紧凑、细腻、微观等特点。常用于人物肖像、显微摄影,或者表现局部细节。对刻画人物的面部往往能达到传神的境地,令人难忘。
三角形构图:以三个视觉中心为景物的主要位置,有时是以三点成一面的几何形成安排景物的位置,形成一个稳定的三角形。这种三角形可以是正三角、也可以是斜三角或倒三角。其中斜三角形较为常用,也较为灵活。三角形构图具有安定、均衡、灵活等特点。
S型构图:画面上的景物呈S形曲线的构图形式,具有延长、变化的特点,使人看上去有韵律感,产生优美、雅致、协调的感觉。当需要采用曲线形式表现被摄体时,应首先想到使用S形构图。常用于河流、溪水、曲径、小路等。
九宫格构图:将被摄主体或重要景物放在“九宫格”交叉点的位置上。“井”字的四个交叉点就是主体的最佳位置。一般认为,右上方的交叉点最为理想,其次为右下方的交叉点。但也不是一成不变的。这种构图格式较为符合人们的视觉习惯,使主体自然成为视觉中心,具有突出主体,并使画面趋向均衡的特点。
小品式构图:通过近摄等手段,并根据思想把本来不足为奇的小景物变成富有情趣、寓意深刻的幽默画面的一种构图方式。具有自由想象、不拘一格的特点。本构图没有一定的章法。
向心式构图:主体处于中心位置,而四周景物呈朝中心集中的构图形式,能将人的视线强烈引向主体中心,并起到聚集的作用。具有突出主体的鲜明特点,但有时也可产生压迫中心,局促沉重的感觉。
垂直式构图:能充分显示景物的高大和深度。常用于表现万木争荣的森林参天大树、险峻的山石、飞泻的瀑布、摩天大楼,以及竖直线形组成的其他画面。
对分式构图:将画面左右或上下一分为比例2:1的两部分,形成左右呼应或上下呼应,表现的空间比较宽阔。其中画面的一部分是主体,另一半是陪体。常用于表现人物、运动、风景、建筑等题材。

以上他们总结的还不错,分享给大家,图片以后会给大家分享并会加以说明,为什么是以后呢,因为我要用我拍的哈哈,记得等我的照片哦

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格: YOLO格标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeek与Mermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeek与Mermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方和使用技巧,充分利用官方文档和社区资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值