在医学领域,皮肤病的准确识别对于正确的诊断和治疗至关重要。近年来,深度学习技术在图像分类任务中取得了显著的进展,其中包括皮肤病的自动识别。本文将介绍如何使用DenseNet或EfficientNet模型,结合ISIC数据集,来进行皮肤病识别任务。
ISIC(International Skin Imaging Collaboration)数据集是一个广泛应用于皮肤病识别研究的公开数据集,包含了临床皮肤图像和其对应的标签,用于不同类型皮肤病的分类任务。
首先,我们需要准备数据集。可以从ISIC官方网站(https://www.isic-archive.com ↗)下载ISIC 2019数据集,该数据集包含了包括恶性黑色素瘤(Malignant Melanoma)和良性病变(Benign Lesions)在内的多个类别的皮肤图像。数据集中的每个图像都有一个对应的标签,标记其所属的皮肤病类型。
接下来,我们将使用Python和深度学习库Keras来实现皮肤病识别模型。以下是一个示例代码,使用DenseNet模型进行训练和测试:
import numpy