皮肤病识别:使用DenseNet或EfficientNet模型进行ISIC数据集上的皮肤病分类

本文探讨了如何使用DenseNet和EfficientNet模型进行皮肤病分类,特别是在ISIC数据集上的应用。通过Python和Keras实现模型,数据增强提升泛化能力,预训练模型能有效识别不同类型的皮肤病。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在医学领域,皮肤病的准确识别对于正确的诊断和治疗至关重要。近年来,深度学习技术在图像分类任务中取得了显著的进展,其中包括皮肤病的自动识别。本文将介绍如何使用DenseNet或EfficientNet模型,结合ISIC数据集,来进行皮肤病识别任务。

ISIC(International Skin Imaging Collaboration)数据集是一个广泛应用于皮肤病识别研究的公开数据集,包含了临床皮肤图像和其对应的标签,用于不同类型皮肤病的分类任务。

首先,我们需要准备数据集。可以从ISIC官方网站(https://www.isic-archive.com ↗)下载ISIC 2019数据集,该数据集包含了包括恶性黑色素瘤(Malignant Melanoma)和良性病变(Benign Lesions)在内的多个类别的皮肤图像。数据集中的每个图像都有一个对应的标签,标记其所属的皮肤病类型。

接下来,我们将使用Python和深度学习库Keras来实现皮肤病识别模型。以下是一个示例代码,使用DenseNet模型进行训练和测试:

import numpy 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值