支持向量回归(Support Vector Regression, SVR)是一种机器学习算法,用于解决回归问题。它通过使用支持向量机(Support Vector Machine, SVM)的思想,将回归问题转化为一个优化问题来进行求解。在本文中,我们将使用MATLAB实现SVR算法来进行多输入单输出的回归预测。
SVR的核心思想是寻找一个函数来拟合训练数据,使得函数与数据之间的误差最小化。与传统的回归方法不同,SVR关注的是在一定的容忍度下找到一个边界,使得预测值与真实值之间的误差尽可能小,并且使得尽可能多的数据点落在该边界内。这个边界由支持向量确定,而支持向量是训练数据中距离边界最近的点。
在开始之前,确保您已经安装了MATLAB软件,并具备基本的MATLAB编程知识。下面是一个简单的多输入单输出的SVR实现示例:
% 步骤1:准备数据
% 假设我们有n个样本,每个样本有m个特征
% X是一个n×m的矩阵,每一行表示一个样本,每一列表示一个特征
% y是一个n×1的列向量,表示每个样本对应的输出