回归预测:MATLAB实现支持向量回归(SVR)多输入单输出

127 篇文章 34 订阅 ¥59.90 ¥99.00
本文介绍了如何使用MATLAB实现支持向量回归(SVR)进行多输入单输出的回归预测。通过构建SVR模型,利用高斯径向基函数作为核函数,调整正则化程度和边界宽度,实现数据拟合并预测新输入特征矩阵的结果。
摘要由CSDN通过智能技术生成

支持向量回归(Support Vector Regression, SVR)是一种机器学习算法,用于解决回归问题。它通过使用支持向量机(Support Vector Machine, SVM)的思想,将回归问题转化为一个优化问题来进行求解。在本文中,我们将使用MATLAB实现SVR算法来进行多输入单输出的回归预测。

SVR的核心思想是寻找一个函数来拟合训练数据,使得函数与数据之间的误差最小化。与传统的回归方法不同,SVR关注的是在一定的容忍度下找到一个边界,使得预测值与真实值之间的误差尽可能小,并且使得尽可能多的数据点落在该边界内。这个边界由支持向量确定,而支持向量是训练数据中距离边界最近的点。

在开始之前,确保您已经安装了MATLAB软件,并具备基本的MATLAB编程知识。下面是一个简单的多输入单输出的SVR实现示例:

% 步骤1:准备数据
% 假设我们有n个样本,每个样本有m个特征
% X是一个n×m的矩阵,每一行表示一个样本,每一列表示一个特征
% y是一个n×1的列向量,表示每个样本对应的输出
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值