在各行业纷纷推动数字化转型的时代大背景下,数据成为企业的核心资产,其价值不仅在于量级,更在于如何让数据有效释放能量,让数据“说话”。在此环境下,CDP成为推动企业数字化转型的重要抓手。
一、企业构建CDP的流程
数据源的识别和整合
构建客户数据中台的第一步,是识别和整合所有的数据源,包括企业内部的各类系统数据,如CRM系统、销售管理系统、客户服务系统、大数据平台、工作流平台等,同时,还需要整合外部的数据,如社交网络数据、第三方数据、开放API等,通过数据集成、抽取和转换,将各类数据源的数据整合起来,形成一个完整的数据仓库。
数据清洗和去重
在完成数据整合之后,需要对数据进行清理和去重,保证数据质量和准确性。通过使用数据清洗工具或人工处理,清理掉重复、错误或无效的数据,并去掉和客户重复的信息,保证客户信息的唯一性
数据的统一建模
在清理和去重之后,需要对数据进行统一的建模,通过数据挖掘和建模等技术,建立全面、准确、精细的客户模型,包括客户基本信息、客户行为、客户偏好等,同时,还需要建立客户数据的标准化管理体系,为后续的数据处理和分析提供支持。
数据的应用和分析
在完成数据建模之后,需要对数据进行有效的利用和分析。通过各种数据分析技术和工具,对客户数据进行综合分析,建立符合企业实际需要的指标体系。在分析中,可以对客户的需求偏好、生命周期和价值等进行深入的解读,从而为企业决策提供有力的支持。
二、需要关注的CDP 能力
在构建CDP 时,企业除了需要关注实时行为洞察、单一客户视图、个性化、测试和优化、隐私和安全性这六个关键特征外,还必须注意以下关键能力:
客户数据管理能力:企业需要不断处理大量来自不同来源不同类型的数据,因此需要使用CDP整合这些数据,但并非所有的CDP都能做到这一点。因此企业在选用CDP时,首先要考虑自己需要收集和利用的数据源和数据类型。
跨渠道身份匹配:除了提供身份解析的能力外,CDP还需要能够跨不同触点、渠道和数据应用程序匹配客户身份。
客户分析:对企业来说,想要更好地了解客户及其行为,分析至关重要。优秀的CDP能够结合人工智能、机器学习和其他分析工具的能力,为企业提供易于理解的分析模型,帮助企业深入了解客户的偏好、购买者的旅程和购买历史,在面对不断变化的消费者趋势时做出及时且正确的决策。
三、企业将如何从CDP受益
更好的个性化营销:CDP可以整合和分析不同渠道和来源的用户数据,从而形成更详细和准确的用户画像。企业可以利用这些画像来洞察用户需求和行为,制定更精准、个性化的营销策略,提升转化率和盈利能力。
优化运营效率:通过跟踪用户的旅程和行为,CDP可以帮助企业识别出用户转化过程中的瓶颈,并采取有针对性的优化措施。例如,通过A/B测试和优化网站流程,可以提升用户购买转化率,降低流失率,从而提高运营效率。
更好的用户体验:它可以帮助企业了解用户在不同渠道和设备上的行为,从而设计更符合用户需求的产品和服务。例如,利用CDP进行客户调查和反馈,可以及时了解用户意见和建议,从而优化用户体验。