- 博客(18)
- 收藏
- 关注
原创 算法(六)贪婪算法
Greedy algorithms 1. 部分背包问题Fractional Knapsack2. 间隔调度Interval Scheduling3.Interval Partitioning4. 图论中最短路径5. Dijkstra’s Algorithm6. 最小生成树(MST)7. 贪心算法贪婪算法可能是实现和设计中最简单的算法,但它们通常是最难证明正确性的算法之一。1. 部分背包问题Fractional Knapsack已知:集合s有n个元素,每个元素中i满足:Bi:一个正的利益Wi:一个正
2021-02-03 22:53:45 1796
原创 算法(五)图论
Graphs1. 基本定义及应用1.1 无向图1.2 术语(无向图)1.3 路径和连接1.4 周期cycles1.5 树tree2 图的数据结构 Graph Data Structures2.1 边表结构Edge List Structure2.2 邻接表 Adjacency list2.3 邻接矩阵结构2.4 渐近性能 Asymptotic performance3 图的遍历 Graph Traversal3.1 广度优先搜索(BFS)案例最短路径3.2 深度优先搜索 Depth-First Search
2021-01-29 10:28:41 592
原创 算法(四)数据结构 II
Data Structure II1. ADT地图2. 二叉搜索树 Binary Search Trees (BST)2.1 插入2.2 删除2.3 复杂性2.4 保持平衡的BST3. 秩平衡树 rank-balance tree3.1 AVL树4. 优先队列ADT4.1 基于优先级队列4.2 优先队列排序4.3 选择排序4.4 插入排序5. 堆数据结构 heap data strycture5.1 插入到堆中5.2 从堆中移除1. ADT地图get(k):如果映射M有一个键为k的
2021-01-28 11:10:48 310
原创 算法(三)数据结构I
Data Structure I1.抽象数据类型 Abstract Data Types (ADT)1.1 基于索引的列表 (List ADT)1.2 基于数组列表 Array-based Lists1.3 位置列表 Positional Lists1.3.1 单链表Singly Linked List1.3.2 双链表 Doubly Linked Lists2. 栈和队列2.1 堆栈stakes ADT2.2 队列QueueADT3. 树 tree3.1遍历树 Traversing trees3.1.1
2021-01-27 10:58:06 467
原创 算法(二)时间复杂度
time complexity1.三种分析方式2.基本分析方法3.函数的种类4.增长的渐近阶4.1 渐进上界:big-oh4.2 渐进下界:big-omege4.3 渐进紧确界:big-theta4.4 性质5.一些常见函数的渐进界5.1 常数时间 Constant time: O(1)5.2 线性时间 Linear time: O(n)5.3 对数时间 O(nlogn) time5.4 二次时间 Quadratic time:O(n2)5.5 立方时间 Cubic time:O(n^3)5.6 多项式时间
2021-01-26 10:00:48 755
原创 算法(一)稳定匹配
stable matching稳定匹配稳定匹配问题完美匹配与稳定配对不稳定配对同桌问题婚姻问题稳定匹配根据医院和医学院学生的一系列偏好,设计一套自我执行的入学程序。非稳定配对: 若x更喜欢 y 而不是指定的医院。或者y更喜欢 x 而不是其入院的学生,则x和 医院 y 是不稳定的:稳定分配。没有非稳定配对的分配。稳定匹配问题参与者对异性成员的评价每个男人按照优先顺序从最好到最坏的顺序列出女人。每个女人按照优先顺序从最好到最坏的顺序列出男人完美匹配与稳定配对完美匹配 perfect mat
2021-01-25 10:33:43 2324 1
原创 统计基础(十一)逻辑回归与无参数回归
???????????????????????????????? ???????????????????????????????????????? and Non-parametric Regression???????????????????????????????? ???????????????????????????????????????? and Non-parametric Regression1.知识点回顾1.1 F测试1.2多项R^2和多项R1.3 anova表2.线性概率模型LPM2.
2021-01-24 15:45:05 824
原创 统计基础(十)特征选择
model selection1.F检验1.1 ANOVA table1.2 整体F检验Overall F test1.3 部分F测试Partial F test2. 特征选择2.1 逆向消除法 Backward Elimination2.2 前向选择变量法 forward variable selection2.3 逐步选择变量法 stepwise variable selection1.F检验F检验(F-test),最常用的别名叫做联合假设检验(英语:joint hypotheses test),此
2021-01-22 11:05:00 1931
原创 统计基础(九)多元回归模型
multiple linear regression1. 残差的诊断2.多元回归模型 Multiple Regression Model2.1一阶多元回归模型 First–Order Multiple Regression Model2.2 两个自变量的一阶模型2.3 估计系数的解释3. 一阶模型示例3.1系数的解释3.1 σ^2的估值3.2 测试整体意义4.多元回归中的R^24.1Adjusted R^21. 残差的诊断▪模型为线性的假设不成立。注意,对于x的高和低值,残差是负的,对于x的中值是正的
2021-01-21 11:31:02 5150
原创 统计基础(八)二元数据
bivariate data1.拟合模型到二元数据二元数据格式为:{(xi, yi)}为i = 1,2,…, n.x = (x1,…xn)T称为解释变量explabatory variable(或自变量independent variable、预测因子prdictor或回归因子regressor),y = (y1,…(yn)>称为响应变量response variable(或因变量dependent variable)。这些由数据的上下文决定。我们感兴趣的是拟合模型Yi= f (xi) + ∈
2021-01-20 11:01:25 2347
原创 统计基础(七)置信区间
confidence intervals1.基本概念1.1 统计推断 statistical inferences1.2 估计量和估计1.3进行统计推断所需估计器的随机3个主要元素2.参数估计2.1 点估计 Point Estimation2.2 区间估计 Interval Estimation2.3 术语3.置信区间3.1 z-interval3.2 t interval3.3 p的的z区间:4.Determining Sample Size4.1determining sample size - μ4.
2021-01-19 11:28:47 14603
原创 统计基础(六)卡方分布
Test for Goodness of Fit具有k个自由度的卡方分布是一个由k个独立标准正态随机变量的和所构成的分布。卡方分布经常用于我们常见的卡方检验中。卡方检验一方面可以用来衡量观测分布和理论分布之间的拟合程度,另一方面也可以测量定性数据两个分类标准间的独立性。事实上,卡方检验还有很多其它的作用。卡方分布是独立标准正态随机变量KaTeX parse error: Can't use function '\(' in math mode at position 5: Z_i \̲(̲0,1)}
2021-01-18 15:05:38 8291
原创 统计基础(五)假设检验中的检验方法
Testing for Means1.R语言的统计分布函数2.如何制定决策规则2.1假设检验与置信区间的关系2.2假设检验的步骤3.独立总体&相关总体3.1两个平均数之间的差值4.检验方法4.1 z检验4.2 t检验4.3 Separate-Variance t检验4.4 Pooled-Variance t检验4.5 Paired Difference t检验4.6 paired t-test 与 two-sample t-test4.7 双样本T检验1.R语言的统计分布函数在R中,有4个与统计
2021-01-15 17:08:20 3467
原创 统计基础(四)假设检验
1.中心极限定理Central Limit Theorem当总体是非正态分布且样本容量足够大时,使用正态分布来近似任何统计量的抽样分布。两种应用:1.1 Xˉ\bar{X}Xˉ的抽样分布•考虑从一个具有平均偏差μ和标准偏差σ的总体(任何总体)中选择的n个观察的随机样本。当n够大(n≥30)、Xˉ\bar{X}Xˉ的抽样分布将近似正态分布均值μ和标准差σn\frac{σ}{\sqrt{n}}nσ。象征性地,Xˉ≈(μ,σn)\bar{X}\approx(\mu,\frac{σ}{\sqrt{n}}
2021-01-14 09:46:49 2184
原创 统计基础(三)随机变量
1. 离散型随机变量 Discrete Random Variables1.1离散分布对于任何离散分布的随机变量X,我们有一个样本空间Ω,值X = {x1x_1x1, x2x_2x2,……}和相关概率{p1p_1p1, p2p_2p2……},其中{pip_ipi= P (X = xix_ixi)}。其中,pip_ipi和为1概率分布函数 Probability Distribution Function(PDF)X的概率分布函数为{x, P(X = x)}的集合。累积分布函数 Cu
2021-01-13 00:00:58 1162 2
原创 统计基础(二)概率
Probabilitya名词解释Experiment 实验获得观察、结果或简单事件的过程Sample point 样本点•实验最基本的结果Sample space 样本集合•收集所有可能的结果Mutually Exclusive 互斥两种结果不可能同时发生Collectively Exhaustive集体样本空间中的一个结果必须出现,事件集覆盖了整个示例空间Simple event 简单事件•一个特征的结果Compound event复合事件•收集结果或简单事件•2个或更多
2021-01-11 12:00:58 2954
原创 统计学基础(一)统计摘要
Summary tatistic文章目录Summary tatistic总体与样本偏差实验设计study design变量variables偏态 skewed四分位法基础R命令总体与样本总体 population:包含所研究的全部个体(数据)的集合样本 sample:研究中实际观测或调查的一部分个体偏差选择性偏差 selection bias在研究过程中因样本选择的非随机性而导致得到的结论存在偏差,属于系统误差。eg.在一项身高研究中,选择篮球运动员作为样本。测量偏差 Measure
2021-01-06 15:22:41 1124
原创 悉尼大学 GC in Data Science 学习总结
该单元的目的是向学生介绍基本的统计概念和方法,以供进一步研究。将特别注意与统计数据分析和数据挖掘有关的方法的开发。将讨论许多有用的统计模型,并将开发面向计算机的估计程序。还将讨论用于分析大数据集的平滑和非参数概念。学生将使用R计算语言来处理课程中所有相关的计算方面。
2021-01-05 20:56:47 2658 4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人