python,四个numpy数组 拼接

python,我有四个numpy数组:resp_wave_block, resp_wave_peak_block, resp_wave_external, resp_wave_wired 我希望把resp_wave_block当成第一列,resp_wave_peak_block当成第二列,resp_wave_external当成第三列,resp_wave_wired当成第四列;然后拼接成一个4列的数组

你可以使用 numpy.column_stack() 函数或者 numpy.vstack() 结合转置操作来实现这个需求。以下是两种方法:

方法1:使用 numpy.column_stack()

import numpy as np

# 假设这是你的四个数组
resp_wave_block = np.array([1, 2, 3])
resp_wave_peak_block = np.array([4, 5, 6])
resp_wave_external = np.array([7, 8, 9])
resp_wave_wired = np.array([10, 11, 12])

# 使用column_stack拼接
result = np.column_stack((resp_wave_block, resp_wave_peak_block, resp_wave_external, resp_wave_wired))

方法2:使用 numpy.vstack() 和转置

# 使用vstack然后转置
result = np.vstack((resp_wave_block, resp_wave_peak_block, resp_wave_external, resp_wave_wired)).T

输出结果

两种方法都会得到相同的结果:

array([[ 1,  4,  7, 10],
       [ 2,  5,  8, 11],
       [ 3,  6,  9, 12]])

注意事项

  1. 确保所有数组的长度相同,否则会报错
  2. 如果数组是一维的,这些方法都能正常工作
  3. 如果数组已经是二维的,可能需要先调整形状

选择哪种方法取决于你的个人偏好,column_stack 更直观一些,因为它明确表示了按列拼接的意图。

我想把所有resp_wave_external=1同时resp_wave_wired=1的行抽离出来,形成一个新的numpy数组

你可以使用 NumPy 的布尔索引来实现这个需求。首先,你需要创建一个布尔条件来选择满足 resp_wave_external=1resp_wave_wired=1 的行,然后用这个条件来索引原始数组。

假设你的数组是这样的形状(4列,N行):

import numpy as np

# 假设这是你的原始数组
data = np.array([resp_wave_block, resp_wave_peak_block, resp_wave_external, resp_wave_wired]).T
# 这里使用了.T来转置,因为通常数据是按行存储的

# 创建布尔条件
condition = (data[:, 2] == 1) & (data[:, 3] == 1)  # 第3列是resp_wave_external,第4列是resp_wave_wired

# 提取满足条件的行
filtered_data = data[condition]

如果你的数组已经是每行代表一个观测值(即形状为 N×4),那么可以直接使用:

# 如果数组已经是N行4列的形状
condition = (data[:, 2] == 1) & (data[:, 3] == 1)
filtered_data = data[condition]

这样 filtered_data 就是包含所有满足条件的行的新数组。

如果你需要保持原始数组的维度(4行×N列),那么可以这样做:

# 如果数组是4行N列的形状
data = np.array([resp_wave_block, resp_wave_peak_block, resp_wave_external, resp_wave_wired])

# 创建布尔条件
condition = (data[2] == 1) & (data[3] == 1)

# 提取满足条件的列(因为现在是4行N列)
filtered_data = data[:, condition]

这样 filtered_data 会是一个4行×M列的新数组(M是满足条件的列数)。

有四个ndarray(1,)的数组,我想把他们拼成一个ndarray(1,4)的数组,该怎么办?

你可以使用 numpy.concatenate()numpy.stack() 函数将四个形状为 (1,) 的数组拼接成一个形状为 (1, 4) 的数组。以下是两种方法的示例:

方法1:使用 numpy.concatenate()

import numpy as np

# 假设有四个形状为 (1,) 的数组
a = np.array([1])
b = np.array([2])
c = np.array([3])
d = np.array([4])

# 先将它们拼接成一个 (4,) 的数组,然后 reshape 为 (1, 4)
result = np.concatenate([a, b, c, d]).reshape(1, 4)
print(result)

方法2:使用 numpy.stack()

import numpy as np

a = np.array([1])
b = np.array([2])
c = np.array([3])
d = np.array([4])

# 使用 stack 并指定 axis=1,然后转置
result = np.stack([a, b, c, d], axis=0).reshape(1, 4)
print(result)

更简洁的方法:直接 numpy.array 并 reshape

import numpy as np

a = np.array([1])
b = np.array([2])
c = np.array([3])
d = np.array([4])

# 直接拼接并 reshape
result = np.array([a, b, c, d]).reshape(1, 4)
print(result)

输出:

无论哪种方法,输出都会是:

[[1 2 3 4]]

选择哪种方法取决于你的具体需求和个人偏好。

python numpy创建一个空的数组,然后在for循环中不断地往后边添加行,每次迭代时就往后边append一行。

在 NumPy 中,​不建议在循环中不断 append,因为 NumPy 数组是固定大小的,每次 append 都会创建一个新数组,导致性能下降。

推荐方法:​

  1. 先用列表收集数据,最后转成 NumPy 数组​(适用于未知最终行数的情况)。
  2. 预分配足够大的数组,然后填充​(适用于已知最大行数的情况)。

方法1:用列表收集数据,最后转成 NumPy 数组

import numpy as np

data_list = []  # 先用列表存储数据

for i in range(5):  # 假设循环5次
    new_row = np.array([i, i+1, i+2])  # 每次生成一行数据
    data_list.append(new_row)  # 添加到列表

# 最后将列表转为 NumPy 数组
result = np.array(data_list)
print(result)

输出:​

[[0 1 2]
 [1 2 3]
 [2 3 4]
 [3 4 5]
 [4 5 6]]

方法2:预分配数组(适用于已知行数的情况)​

import numpy as np

# 预分配一个足够大的数组(例如 100 行 x 3 列)
result = np.empty((0, 3), dtype=np.int32)  # 初始为空数组

for i in range(5):  # 假设循环5次
    new_row = np.array([[i, i+1, i+2]])  # 注意:new_row 必须是 2D(如 (1,3))
    result = np.append(result, new_row, axis=0)  # 沿 axis=0 添加行

print(result)

输出:​

[[0 1 2]
 [1 2 3]
 [2 3 4]
 [3 4 5]
 [4 5 6]]

为什么 np.append 在循环中效率低?​

  • ​**np.append 每次都会创建新数组**,复制旧数据,导致 ​O(n²) 时间复杂度
  • 列表的 append 是 O(1) 操作,所以先用列表收集数据,最后转成 NumPy 数组更高效。

最佳实践:​

✅ ​优先使用方法1(列表收集数据)​,除非你明确知道最终数组大小。
❌ ​避免在循环中频繁 np.append,除非数据量很小。

希望这能帮到你!🚀

python 用列表收集数据,在for循环中不断地往后边添加元素,元素都是numpy的array数组:N行四列。最后把列表中的所有元素堆叠起来,形成一个最终的M行,四列的数组。

在 Python 中,如果你需要 ​在循环中收集多个 (N, 4) 的 NumPy 数组,并最终将它们 ​堆叠成一个 (M, 4) 的大数组,可以按照以下步骤操作:

推荐方法

  1. 使用 list 收集所有小数组​(避免在循环中频繁 np.append,提高效率)。
  2. 最后用 np.vstack()np.concatenate(axis=0) 堆叠

示例代码

import numpy as np

# 1. 创建一个空列表,用于收集所有小数组
array_list = []

# 2. 模拟循环,每次生成一个 (N, 4) 的数组并添加到列表
for i in range(3):  # 假设循环3次,每次生成不同形状的数组
    # 随机生成一个 (N, 4) 的数组(N可能不同)
    N = np.random.randint(1, 4)  # N可以是1, 2, 3
    new_array = np.random.rand(N, 4)  # 随机生成 (N, 4) 的数组
    array_list.append(new_array)  # 添加到列表
    print(f"第 {i+1} 次添加的数组形状:", new_array.shape)

# 3. 最终用 np.vstack 堆叠成 (M, 4) 的大数组
final_array = np.vstack(array_list)  # 也可以用 np.concatenate(array_list, axis=0)

print("\n最终堆叠后的数组形状:", final_array.shape)
print("最终数组:\n", final_array)

输出示例

第 1 次添加的数组形状: (2, 4)
第 2 次添加的数组形状: (3, 4)
第 3 次添加的数组形状: (1, 4)

最终堆叠后的数组形状: (6, 4)
最终数组:
 [[0.12 0.45 0.78 0.91]
  [0.34 0.56 0.89 0.23]
  [0.67 0.89 0.12 0.45]
  [0.78 0.90 0.34 0.56]
  [0.23 0.45 0.67 0.89]
  [0.56 0.78 0.90 0.12]]

关键点

✅ ​**array_list.append(new_array)**​

  • 在循环中,直接 append 每个 (N, 4) 的小数组到列表。

✅ ​**np.vstack(array_list)**​(或 np.concatenate(array_list, axis=0)

  • 最终将所有小数组垂直堆叠(axis=0)成 (M, 4) 的大数组。

为什么不用 np.append 在循环中拼接?​

❌ ​**np.append 每次都会复制数据,效率低​(时间复杂度 O(n²))。
✅ ​
list.append + np.vstack 更高效**​(时间复杂度 O(n))。


其他替代方法

  • ​**np.concatenate(array_list, axis=0)**​(功能与 np.vstack 类似)。
  • ​**np.row_stack(array_list)**​(等同于 np.vstack)。

总结

方法适用场景推荐度
list.append + np.vstack适用于动态增长数组⭐⭐⭐⭐⭐
np.append 循环拼接不推荐,性能差
预分配大数组 + 填充适用于已知 M 的情况⭐⭐⭐

推荐使用 list.append + np.vstack,既高效又灵活!​​ 🚀

.reshape(-1, 1) 是什么意思?

在 NumPy 中,.reshape(-1, 1) 是一种改变数组形状(reshape)​的操作,它的作用是将数组转换为一个列向量(二维数组,形状为 (M, 1))​


​**reshape(-1, 1) 的含义**​

  • ​**-1​ 表示 ​自动计算该维度的大小**,使总元素数不变。
  • ​**1​ 表示 ​新数组的第二维度大小为 1**​(即单列)。

关键点

✅ ​**-1 的作用​:NumPy 会自动计算这个维度的大小,保证 总元素数 = 行数 × 列数
✅ ​
(M, 1) 的形状​:转换后的数组是一个 ​二维列向量**​(而不是一维数组)。


示例 1:一维数组 → 列向量

import numpy as np

arr = np.array([1, 2, 3, 4, 5])  # 形状 (5,)
col_vector = arr.reshape(-1, 1)   # 形状 (5, 1)

print("原数组:\n", arr)
print("形状:", arr.shape)
print("\nreshape(-1, 1) 后:\n", col_vector)
print("形状:", col_vector.shape)

输出:​

原数组:
 [1 2 3 4 5]
形状: (5,)

reshape(-1, 1) 后:
 [[1]
 [2]
 [3]
 [4]
 [5]]
形状: (5, 1)

示例 2:二维数组 → 列堆叠

import numpy as np

arr = np.array([
    [1, 2, 3],
    [4, 5, 6]
])  # 形状 (2, 3)

# 提取第一列并转为列向量
col1 = arr[:, 0].reshape(-1, 1)  # 形状 (2, 1)

print("原数组:\n", arr)
print("形状:", arr.shape)
print("\n第一列 reshape(-1, 1) 后:\n", col1)
print("形状:", col1.shape)

输出:​

原数组:
 [[1 2 3]
 [4 5 6]]
形状: (2, 3)

第一列 reshape(-1, 1) 后:
 [[1]
 [4]]
形状: (2, 1)

​**reshape(-1, 1) vs reshape(1, -1)**​

操作含义示例输出形状
​**reshape(-1, 1)**​转为列向量[1, 2, 3][[1], [2], [3]](3, 1)
​**reshape(1, -1)**​转为行向量[1, 2, 3][[1, 2, 3]](1, 3)

常见用途

  1. 机器学习数据预处理​(如 sklearn 要求输入是 (n_samples, n_features) 格式)。
  2. 矩阵运算​(如计算点积时,列向量可以直接与矩阵相乘)。
  3. 数据可视化​(某些绘图函数要求输入是列向量)。

总结

  • ​**reshape(-1, 1)​ → ​把数组变成列向量**​(二维数组,单列)。
  • ​**-1**​ 是 NumPy 的自动计算占位符,保证总元素不变。
  • 适用场景​:需要将一维数组转为二维列向量时使用。

希望这个解释对你有帮助!🚀

python,两个numpy数字都是(3,),如何拼接形成一个(6,)?

在 NumPy 中,如果两个数组的形状都是 (3,),你可以使用 np.concatenate()np.hstack()np.append() 将它们拼接成一个 (6,) 的数组。以下是几种方法:


方法1:np.concatenate()(推荐)​

import numpy as np

a = np.array([1, 2, 3])  # 形状 (3,)
b = np.array([4, 5, 6])  # 形状 (3,)

result = np.concatenate([a, b])  # 拼接成 (6,)
print(result)

输出:​

[1 2 3 4 5 6]

方法2:np.hstack()(水平堆叠)​

import numpy as np

a = np.array([1, 2, 3])  # (3,)
b = np.array([4, 5, 6])  # (3,)

result = np.hstack([a, b])  # 水平拼接成 (6,)
print(result)

输出:​

[1 2 3 4 5 6]

方法3:np.append()(类似列表拼接)​

import numpy as np

a = np.array([1, 2, 3])  # (3,)
b = np.array([4, 5, 6])  # (3,)

result = np.append(a, b)  # 拼接成 (6,)
print(result)

输出:​

[1 2 3 4 5 6]

方法4:np.r_(便捷拼接)​

import numpy as np

a = np.array([1, 2, 3])  # (3,)
b = np.array([4, 5, 6])  # (3,)

result = np.r_[a, b]  # 拼接成 (6,)
print(result)

输出:​

[1 2 3 4 5 6]

总结

方法说明推荐度
​**np.concatenate([a, b])**​最通用的拼接方式⭐⭐⭐⭐⭐
​**np.hstack([a, b])**​水平拼接(适用于 (n,) 数组)⭐⭐⭐⭐
​**np.append(a, b)**​类似 Python 列表的 append⭐⭐⭐
​**np.r_[a, b]**​语法糖,适合快速拼接⭐⭐

推荐使用 np.concatenate(),因为它是最通用且高效的方式!​​ 🚀

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值