"Dilated Attention"是一种非常创新的技术,可以将上下文窗口扩展到10亿个token
Dilated Attention是一种改进的注意力机制,使模型能够关注输入序列中更远的部分,而不会大幅增加计算成本。它的灵感来自于CNN中的扩张卷积。
在标准的Transformer模型中,自注意力机制允许输入序列中的每个token关注所有其他token,导致复杂度为O(N^2),其中N是序列长度。
当尝试扩展到非常长的序列(例如10亿个token)时,由于计算和内存限制,平方复杂度变得不可行。
Dilated Attention引入了一个扩张因子,改变了token相互关注的模式。其思想是让token以越来越大的距离关注其他token,跳过中间的token。
Dilated Attention的工作原理
扩张因子: 一个超参数,决定了被关注的token之间的距离。例如,扩张因子为2意味着每个token关注序列中每隔一个的token。
多层结构: 通过堆叠具有不同扩张因子的多个层,模型可以从各种距离收集信息,创建更全面的表示。
稀疏连接: 这导致注意力矩阵中的稀疏连接,将复杂度从O(N^2)降低到更易处理的程度,如O(N log N)甚至是线性复杂度,具体取决于扩张模式。
---
它如何实现10亿token的上下文
内存效率: Dilated Attention显著减少了内存需求,允许处理更长的序列。
计算效率: 通过降低复杂度,它使得在合理的计算时间内处理更大的序列成为可能。
保持长距离依赖: 尽管降低了复杂度,Dilated Attention仍然允许捕获文本中的长距离依赖关系,这对许多NLP任务至关重要。
--------
与HuggingFace或其他框架集成
在流行的深度学习框架中实现Dilated Attention通常需要自定义注意力层。您可能需要修改现有的注意力机制以纳入扩张因子、更新掩码,并确保正确处理反向传播。
---
总之,Dilated Attention是朝着将基于注意力的模型扩展到处理极长序列迈出的重要一步。通过引入扩张因子和利用稀疏连接,它使得处理高达10亿token的上下文成为可能,在大幅降低计算要求的同时保持了注意力的本质。
--------------
Dilated Attention与Sparse Attention的区别
Dilated Attention和Sparse Attention都是降低Transformer中注意力机制计算复杂度的机制,但它们通过不同的方式实现这一目标。让我们探讨一下两者的区别:
Sparse Attention选择性地只关注序列中的一部分token,创建一个许多条目为零的稀疏矩阵。
稀疏模式可以是固定的或学习的,它定义了哪些token关注哪些其他token。常见的模式包括条带状、滑动窗口或其他预定义的结构。(滑动窗口是Swinformer使用的变体)
根据稀疏模式的不同,Sparse Attention可能无法确定地捕获长距离依赖关系。
--------
比较
相似性 两者都旨在降低计算复杂度,并允许模型处理更长的序列。
区别:
- 模式: Dilated使用规则的跳跃模式,而Sparse可以使用各种模式,包括学习的模式。
- 灵活性: Sparse Attention在定义注意力模式方面提供了更大的灵活性,而Dilated Attention具有更刚性、规则的结构。
- 覆盖范围: 由于规则的跳跃,Dilated Attention可能会错过一些更精细的局部细节,而Sparse Attention捕获依赖关系的能力取决于所使用的特定模式。
- 实现复杂度: Sparse Attention通常需要专门的算法和硬件来进行高效的稀疏矩阵乘法,而Dilated Attention可以使用标准的稠密矩阵运算来实现。
总之,尽管这两种机制实现了相似的目标,但它们采用了不同的策略、权衡和最适合的应用。Dilated Attention提供了一种实现长距离依赖的直接方式,但会损失一些粒度,而Sparse Attention可以允许更复杂和特定于任务的注意力模式,但通常代价是更大的实现复杂度。
------------
为什么语言Transformer需要从视觉Transformer引入Dilation?
LONGNET中的Dilated Attention
- 应用: 专为序列建模设计,将Transformer扩展到极长序列(如10亿个token)。
- 概念: 随着距离的增长,关注区域呈指数扩张,使模型能够捕获序列中的长距离依赖关系。
- 复杂度: 同时保持线性复杂度,使模型能够处理极长的序列而不牺牲性能。
- 集成: 可作为Transformer模型中标准注意力的直接替代,可应用于一般语言任务。
视觉Transformer与语言Transformer在任务特性和序列长度上有所不同,这导致它们在注意力机制的设计上采取了不同的方法。以下是视觉Transformer的扩张注意力在语言Transformer中的应用动机:
1. 序列长度的差异:
- 视觉Transformer通常处理较短的序列,如图像分块后的序列。
- 语言Transformer需要处理更长的序列,如整篇文章或对话。
2. 捕捉长距离依赖的需求:
- 在图像任务中,相邻片段间的局部关系通常足以捕捉关键信息。
- 在语言任务中,捕捉词语或句子之间的长距离语义依赖至关重要。
3. 计算效率的考量:
- 视觉Transformer的序列较短,采用稠密注意力计算代价相对较小。
- 语言Transformer面临更长序列,需要更高效的注意力机制来控制计算成本。
4. 跨领域知识借鉴:
- 扩张注意力最初在视觉任务中展现出优越性能,吸引了NLP研究者的兴趣。
- 将扩张注意力引入语言Transformer,有望在保持计算效率的同时提升模型性能。
总的来说,尽管视觉和语言任务在序列特性上有所不同,但它们在注意力机制设计上有着共通的目标:捕捉关键的依赖关系,同时兼顾计算效率。语言Transformer借鉴并改进了视觉Transformer的扩张注意力,以更好地满足语言任务的特定需求。这种跨领域的知识融合和创新,推动了Transformer架构在不同任务上的进一步发展和应用。
人工智能技术的发展常常需要跨领域的思想碰撞和借鉴。视觉和语言虽然是不同的领域,但它们在底层的模型架构和算法设计上往往有许多共通之处。扩张注意力从视觉Transformer到语言Transformer的演进过程,正是这种跨领域融合创新的一个绝佳例证。
随着人工智能研究的不断深入,我们可以期待看到更多这样的跨领域知识融合。不同领域的研究者通过分享见解、借鉴彼此的优秀成果,共同推动人工智能技术的进步。这种开放、互鉴的研究氛围,将为人工智能的未来发展注入源源不断的创新动力。