小土堆pytorch学习笔记(六、torchvision中的数据集使用)

一、torchvision中的数据集使用

打开pytorch网页 -> Docs -> torchvision -> Dataset
在这里插入图片描述
运行代码进行下载:

import torchvision
# 下载torchvision上的CIFAR10数据集,train等于True时下载训练集,否则下载验证集
train_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset", train=False, download=True)

结果如下:

Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./dataset\cifar-10-python.tar.gz
100%|██████████| 170498071/170498071 [03:05<00:00, 918748.29it/s] 
Extracting ./dataset\cifar-10-python.tar.gz to ./dataset
Files already downloaded and verified

然后查看验证集第一张图片的类型并打开图片看一下:

print(test_set[0])
print(test_set.classes)

img, target = test_set[0]
print(img)
print(target)
print(test_set.classes[target])
img.show()

运行结果如下:

Files already downloaded and verified
Files already downloaded and verified
(<PIL.Image.Image image mode=RGB size=32x32 at 0x23AA09B2800>, 3)
['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
<PIL.Image.Image image mode=RGB size=32x32 at 0x23AA09B2800>
3
cat

其中,target = 3,就是类别从左到右数到test_set.classes[3],就是cat。显示的图片也为cat,但是只有32 x 32的像素。
在这里插入图片描述
然后改变数据集的数据类型:PIL -> tensor

train_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=dataset_transform, download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=dataset_transform, download=True)
print(test_set[0])

运行结果:

Files already downloaded and verified
Files already downloaded and verified
(tensor([[[0.6196, 0.6235, 0.6471,  ..., 0.5373, 0.4941, 0.4549],
         [0.5961, 0.5922, 0.6235,  ..., 0.5333, 0.4902, 0.4667],
         [0.5922, 0.5922, 0.6196,  ..., 0.5451, 0.5098, 0.4706],
         ...,
         [0.2667, 0.1647, 0.1216,  ..., 0.1490, 0.0510, 0.1569],
         [0.2392, 0.1922, 0.1373,  ..., 0.1020, 0.1137, 0.0784],
         [0.2118, 0.2196, 0.1765,  ..., 0.0941, 0.1333, 0.0824]],

        [[0.4392, 0.4353, 0.4549,  ..., 0.3725, 0.3569, 0.3333],
         [0.4392, 0.4314, 0.4471,  ..., 0.3725, 0.3569, 0.3451],
         [0.4314, 0.4275, 0.4353,  ..., 0.3843, 0.3725, 0.3490],
         ...,
         [0.4863, 0.3922, 0.3451,  ..., 0.3804, 0.2510, 0.3333],
         [0.4549, 0.4000, 0.3333,  ..., 0.3216, 0.3216, 0.2510],
         [0.4196, 0.4118, 0.3490,  ..., 0.3020, 0.3294, 0.2627]],

        [[0.1922, 0.1843, 0.2000,  ..., 0.1412, 0.1412, 0.1294],
         [0.2000, 0.1569, 0.1765,  ..., 0.1216, 0.1255, 0.1333],
         [0.1843, 0.1294, 0.1412,  ..., 0.1333, 0.1333, 0.1294],
         ...,
         [0.6941, 0.5804, 0.5373,  ..., 0.5725, 0.4235, 0.4980],
         [0.6588, 0.5804, 0.5176,  ..., 0.5098, 0.4941, 0.4196],
         [0.6275, 0.5843, 0.5176,  ..., 0.4863, 0.5059, 0.4314]]]), 3)

再使用for循环打开test_set[ ]的前10张图片:

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("p10")
for i in range(10):
    img, target = test_set[i]
    writer.add_image("test_set", img, i)

writer.close()

再在终端里输入命令:tensorboard --logdir=“p10”
得到如下结果:
在这里插入图片描述

二、可以下载其它数据集,如CoCo

如下:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值