十三、推荐一个深度学习的画图工具

偶然间发现的画图工具,可以绘制各种格式的神经网络模型。

而且可以生成SVG格式,可以直接下载。

最重要的是免费。

可以生成以下三种格式的网络模型图

工具链接附上:

http://alexlenail.me/NN-SVG/LeNet.html
### 关于深度学习论文中的表绘制方法与工具 在撰写深度学习论文时,高质量的表对于展示实验结果至关重要。常用的一种方式是利用Python编程语言及其丰富的可视化库来创建这些表。 #### Matplotlib 和 Seaborn Matplotlib 是一个广泛使用的绘库,能够生成各种静态、动态形,并支持多种输出格式[^2]。Seaborn 基于 Matplotlib 构建,提供了更高级别的接口用于统计形的快速制作,特别适合用来美化数据分布和模型性能比较等内容。 ```python import matplotlib.pyplot as plt import seaborn as sns # 创建样本数据集 data = ... # 使用seaborn出热力 sns.heatmap(data, annot=True) plt.show() ``` #### Plotly Plotly 提供了一个交互式的绘平台,可以很容易地构建复杂的三维像和其他类型的互动式表。这对于探索高维空间下的特征关系或者时间序列预测的结果尤其有用。 ```python import plotly.express as px df = ... # 数据框对象 fig = px.scatter_3d(df, x='col1', y='col2', z='col3') fig.show() ``` #### TensorFlow 和 Keras 的内置功能 当涉及到神经网络训练过程中的监控指标(如损失函数值随epoch变化曲线),可以直接调用 `tensorflow` 或者 `keras` 中的相关API来进行记录并自动生成相应的表[^1]。 ```python from tensorflow.keras.callbacks import History history:History = model.fit(...).history plt.plot(history['loss']) plt.title('Model Loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train'], loc='upper right') plt.show() ``` 通过上述几种不同的手段,可以在不依赖特定商业软件的情况下完成大多数情况下所需的学术研究表工作。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小常在学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值