建议Ctrl+D保存到收藏夹,方便随时查看 人工智能(AI)学习资料库Python机器学习简介第一章 让计算机从数据中学习 将数据转化为知识三类机器学习算法 第二章 训练机器学习分类算法 透过人工神经元一窥早期机器学习历史使用Python实现感知机算法基于Iris数据集训练感知机模型自适应线性神经元及收敛问题Python实现自适应线性神经元大规模机器学习和随机梯度下降第三章 使用Scikit-learn进行分类器之旅 如何选择合适的分类器算法scikit-learn之旅逻辑斯蒂回归对类别概率建模使用正则化解决过拟合支持向量机使用松弛变量解决非线性可分的情况使用核SVM解决非线性问题决策树学习最大信息增益构建一棵决策树随机森林k近邻——一个懒惰学习算法总结第四章 构建一个好的训练集---数据预处理 处理缺失值消除带有缺失值的特征或样本改写缺失值理解sklearn中estimator的API处理分类数据将数据集分割为训练集和测试集统一特征取值范围选择有意义的特征利用随机森林评估特征重要性总结第五章 通过降维压缩数据 PCA进行无监督降维聊一聊方差特征转换LDA进行监督数据压缩原始数据映射到新特征空间使用核PCA进行非线性映射用Python实现核PCA映射新的数据点sklearn中的核PCA总结第六章 模型评估和调参 通过管道创建工作流K折交叉验证评估模型性能使用学习曲线和验证曲线 调试算法通过网格搜索调参通过嵌套交叉验证选择算法不同的性能评价指标第七章 集成学习 集成学习结合不同的分类算法进行投票第八章 深度学习之PyTorchhttp://www.aibbt.com/a/20787.html