【JSOI2011】同分异构体计数

先处理出根的度为2,其余点度<=4的无标号有根树的方案数

环有旋转和翻转两种变换,由于m>=3,构成的置换群阶为2m,用burnside引理处理

旋转k(0<=k<m)步可以形成gcd(m,k)个等价类,每个等价类包含m/gcd(m,k)个位置

旋转+翻转需要分奇偶处理:

 若m为奇数,则有m个这种置换,形成(m+1)/2个等价类,其中一个等价类包含1个位置,其余包含2个位置

 若m为偶数

1、则有m/2个置换形成m/2个等价类,每个等价类包含2个位置

2、另有m/2个置换形成m/2+1个等价类,其中两个等价类包含1个位置,其余包含2个位置

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

int n,m;
int P;

template <typename T> void read(T &x) 
{
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}

template <typename T> void write(T x) 
{
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}

template <typename T> void writeln(T x) 
{
	write(x);
	puts("");
}

inline int Gcd(int a,int b) {for (int c;b;c = a,a = b,b = c % b); return a;}

inline int Phi(int n)
{
	int x = n;
	for (int i = 2;i * i <= n;i ++) 
	if (n % i == 0)
	{
		do n /= i;
		while (n % i == 0);
		x = x / i * (i - 1);
	}
	if (n > 1) x = x / n * (n - 1);
	return x;
}

inline int Fix(int x) {return x + (x >> 31 & P);}

struct Num
{
	int x;
	Num(int a = 0) : x (a) {}
	Num operator + (Num w) {return Fix(x + w.x - P);}
	Num operator * (Num w) {return ll(x) * w.x % P;}
	void operator += (Num w) {x = Fix(x + w.x - P);}
};

Num s[5][1007],Gs[11],Id[117],F[57][1007],G[57][1007],Ans;

void Calc(int m,int n)
{
	int g = Gcd(n,m);
	Num v = 0;
	for (int d = 1;d <= g; d ++) 
	if (g % d == 0) v += F[m / d][n / d] * Phi(d);
	v += G[m][n] * m;
	Ans += v * Id[m * 2];
}

int main()
{
	read(n) , read(m) , read(P);
	
	if (m > n) m = n;
	s[0][0] = Id[1] = 1;
	for (int i = 2;i <= 115;i ++) Id[i] = Id[P % i] * (P - P / i);
	
	for (int i = 1;i <= n;i ++)
	{
		F[1][i] = G[1][i] = s[0][i - 1] + s[1][i - 1] + s[2][i - 1];
		Gs[1] = F[1][i] + s[3][i - 1];
		for (int j = 2;j <= 3;j ++) Gs[j] = Gs[j - 1] * (Gs[1] + (j - 1)) *Id[j];
		for (int j = 3;j;--j)
		{
			for (int k = n;k >= i;--k)
			{
				for (int t = 1;t <= j; t ++)
				{
					int w = k - t * i;
					if (w >= 0) s[j][k] += Gs[t] * s[j - t][w];
				}
			}
		}
	}	

	for (int i = 2;i <= m;i ++)
	{
		for (int j = i;j <= n;j ++)
		{
			for (int k = 1;k < j;k ++) F[i][j] += F[i - 1][j - k] * F[1][k];
			if (i & 1)
			{
				for (int k = 2;k < j;k += 2) G[i][j] += F[i >> 1][k >> 1] * F[1][j - k];
			}else{
				for (int k = 1;k < j;k ++) G[i][j] += G[i - 1][j - k] * F[1][k];
				if (~j&1) G[i][j] += F[i >> 1][j >> 1];
				G[i][j] = G[i][j] * Id[2];
			}
		}
	}
	//printf("%d\n",G[m][n]);
	for (int i = 3;i <= m ;i ++) Calc(i,n);
	writeln(Ans.x);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值