c语言封闭曲线分割平面_大话圆锥曲线

8d26b46508ffa5ea229a903633add919.png

前言:传说五百年前,圆锥曲线三兄弟的椭圆,双曲线,抛物线大闹高中神殿,将众多高中小生打得哭爹喊娘,高中闹得是鸡犬不宁,众高考大神面对圆锥曲线三兄弟也纷纷败下阵来。从此圆锥曲线成了众高中小生的恶梦。殊不知早在五百年前的五百年前的五百年前……,圆锥曲线也是很单纯的,不知是哪路神仙歪曲事实,从此在高中历史上处处恶意中伤圆锥曲线,这才导致了上面所说的圆锥曲线三兄弟大闹高中小生。本故事将带你走近圆锥曲线的故事,让你认识到圆锥曲线平易近人的一面。

故事的开始:

在宇宙的各个地方,普遍存在圆锥曲线三兄弟的身影。椭圆掌管着太阳系行星运动的轨迹,

965fd22fa871b18521ccbb9347ff1c93.png
图1.太阳系行星的运动轨迹

双曲线出现在从地球发射出去的探测器上,

16c1f43a636b925e46bdf1c520687011.png
图2.地面发射探测器的运动轨迹

你在地面抛出物体就会激发抛物线。

1b9dd00053513303a005e3c01f5cd661.png
图3.抛体的运动轨迹

圆锥曲线的爸爸妈妈:

说了那么多,它们既然叫圆锥曲线,那圆锥在哪里?这名字难道瞎编的不成?我给你找了个圆锥,如图4

28f490e1d4c0cce9cd340a503086fe0e.png
图4.圆锥

圆锥有了,那圆锥曲线呢?我们知道线是面面的交线,这里有了圆锥面(圆锥的侧面),那再找个面和它相交,很容易想到找个平面,可是不管咋整,都不能由一个平面和圆锥面相交得到圆锥曲线三兄弟呀。不逗圈子了,我们进入正题,不要把圆锥面误认为上面这个圆锥体的侧面,实际上它只是圆锥面的一支。真正的圆锥面是图5这个样子的。

3a63fba5cb5f38ed68cd58ad01ccd667.png
图5.圆锥面

圆锥面是直线m绕一条直线

旋转一周得到的,两直线交点叫着圆锥面的顶点,直线
m叫做圆锥面的母线,直线
叫着圆锥面的轴,直线
m
的夹角为ϴ,两直线相较于
A点,如图6.

c90faa9a5ca36db94236f7a9b0679113.png
图6.圆锥面

上面介绍了圆锥三兄弟的妈妈圆锥面,很快就有人问:难不成平面是圆锥三兄弟的爸爸?说得没错,就像有爸妈才有你一样,只有妈妈产生不了圆锥曲线三兄弟呀。

生孩子的过程

平面爸爸与圆锥面妈妈以不同的姿势相结合,就会生出不同的孩子。

用平面去截取圆锥面,他们的交线叫作截线。令轴l与平面F夹角为α,0≤α≤π/2. 分两种情况:平面F 过顶点A与不过顶点A

(1)过顶点A,那么截线Г 有三种情况:

当ϴ< α≤π/2时,截线Г 只含有一个点A

当α=ϴ时,截线Г 是一条母线;

当0≤α<ϴ时,截线Г 是两条母线.

为方便爱问问题的同学,我们送佛送到西:取过轴

并且垂直于平面
F的平面,该平面就如上图的纸面(上图为形象起见,实际在这样的纸面只能看到圆锥面的两母线),那么平面 F在该面上的投影为过 A点的一条直线。这样是不是容易看出来了,下面一种情况同理。

(2)不过顶点A,那么截线Г 有四种情况:

当 α=π/2时,截线Г 是一个圆;

当ϴ< α<π/2,截线Г 称为椭圆;

当α=ϴ时,截线Г 称为抛物线;

当0≤α<ϴ时,截线Г 称为双曲线.

(2)中的四种情况所截曲线统称圆锥曲线,而(1)中的三种情况所截线则称为退化的圆锥曲线。

上面就是用数学语言描述的平面爸爸F与圆锥面妈妈生儿子的过程。我们用人话来说就是这样的过程:平面爸爸与圆锥面妈妈以不同的姿势在不同的位置生儿子时,当在圆锥面妈妈的顶点A生儿子时,怎么生都是怪胎,不同的姿势生出的儿子不同,远一点生出的儿子是个点(ϴ< α≤π/2),再近点生出一条线(α=ϴ),再接近就变成了双胞胎(0≤α≤ϴ);当换个位置生儿子时,生出的都是棒棒的圆锥曲线,同样的,不同的姿势生出的儿子不同,最远的时候,生出的是圆(α=π/2),稍微远一点生出的儿子是个椭圆(ϴ< α<π/2),再近点生出一条抛物线(α=ϴ),再接近就变成双曲线了(0≤α<π/2)。

圆锥曲线的胚胎——Dandelin

正如母亲肚子里的胚胎,这时候发育好不好对后天的影响具有决定性的作用,因为一旦发育不好,就真成了怪胎,有没有你都是个问题,发育好了先天就有优势,比如隔壁老王家那儿子天生就聪明,隔壁老赵家那姑娘天生就漂亮,比如…,扯太远了。说这些就是要告诉你,Dandelin球对于圆锥曲线具有重要的意义,它给出了圆锥曲线的焦点和准线,同时告诉你椭圆上一点到两焦点的距离之和等于常数,双曲线上一点到两焦点距离之差的绝对值为常数,抛物线上一点到焦点和准线的距离相等。所以,把Dandelin球比作圆锥曲线的胚胎,是不是很有道理,哈哈哈。。。

Dandelin球就是与圆锥曲线的爸爸妈妈相切的球,与生物一样,Dandelin球作为胚胎,始终在圆锥面妈妈的肚子里(接下来你会发现确实是这样),我们来作出Dandelin球。

我们将之前提到的过轴

且与平面
F垂直的平面记作 S, 且平面 S与圆锥面 M(圆锥曲线的 Mom当然应该叫做圆锥面 M了)的两条交线为
,与平面F的交线为
,直线
与直线
的交点分别为
D、L,如图7所示。

7ca1bb58af10d75c67e14a7a39c50ecc.png
图7.Dandelin球的做法

接着,作∠ADL的角平分线,它与

交于
O点。过 O点作与母线
的垂线,垂足为
K,则以 O为圆心,线段 OK为半径的球就是 Dandelin球。你看, Dandelin球是不是在圆锥面妈妈的肚子里了。

这里,我们将三维立体图形的问题转化到二维平面图形问题,是一种降维的方法(记得三体人的降维打击不?)。

容易知道,对于椭圆和双曲线,存在两个Dandelin球,称为Dandelin双球。而抛物线只有一个Dandelin球。

虽然给出了Dandelin球,但并不代表我们认识了它,我们还要研究它的性质才算对它有个科学的认识,正如在代数里,给出了一个集合,并不代表认识了这个集合,还需要研究集合当中元素的性质。比如自然数集:{0,1,2,3,…},给出这个集合还不行,你还得知道元素间的运算法则:比如1+1=2,2*3=6. 像这样的一个集合当中的两个元素对应该集合的另一个元素的运算叫做二元运算(无形中已从自然数集合推广到了更广义的集合),并且称集合与它的一个二元运算定义了一个代数结构。进一步的,若集合上的一个二元运算满足结合律,(比如

),则称集合连同其上的满足结合律的二元运算叫做一个半群。若集合当中还存在一个元素e,使得集合中任何元素与它进行二元运算都等于这个任意元素(比如加法运算的0,乘法运算的1),称e为这个代数结构的单位元,带有单位元的半群称为幺半群(或有单位元的半群)。若幺半群当中的某两个元素进行二元运算等于单位元,则这两元素称为可逆的,它们则互为逆元素。所有元素都可逆的幺半群叫作群。

或许感觉还是有点陌生,但其实大家一直在接触群,比如小学的时候整天都在数0,1,2,3,…,还要整天算2+3=5,背九九乘法表,这就是在自然数集N={0,1,2,3,…}上给出了加法和乘法的二元运算,自然数集N和加法运算"+"定义了一个代数结构,N和"×"也定义了一个代数结构,把这两个代数结构分别记作(N,+)、(N,×). 我们知道二元运算"+"与"×"满足结合律,所以代数结构(N,+)、(N,×)又是一个半群,而自然数集中0和1又分别是代数结构(N,+)、(N,×)的单位元,所以代数结构(N,+)、(N,×)都是幺半群,也常把单位元e在代数结构中表示出来,比如上面两个幺半群写作(N,+,0)、(N,×,1)。等到了初中,我们开始认识了负数,又将自然数集N推广到了整数集Z,这时对应任意的整数z,都有整数-z,使得它两之和为0,那么整数集Z和它的二元运算"+"一起,构成了一个群(Z,+). 可是对于"×"运算,任意整数z,它的逆元是

,而
又不是整数,那咋整?后来我们认识了有理数(形式为
p、q为整数, q≠0),这样,对于任意正有理数,都有其对应的逆元也属于正有理数集
,所以代数结构(
,×)也是一个群。对于减法和除法,有兴趣的同学可以当做练习加深一下。所以说,大家其实一直在接触群,只不过我们把加减乘除它们共同的特征提炼(抽象)了出来,推广到了新的概念——群。

别跑太远了,快回到Dandelin球怀里来。当然了,我们的Dandelin球是为了说明圆锥曲线的性质,所以说认识它是要认识它与圆锥曲线的关系,不是说只让你知道它是圆锥曲线的胚胎体,还要知道它怎样反映了圆锥曲线的性质,比如椭圆聪不聪明,双曲线美不美,抛物线有没有缺胳膊少腿。

胚胎的重要性

Dandelin球如何决定圆锥曲线性质的呢?在回答这个问题之前,请大家记住:过球外一点引球的切线,则所有切线长(这点与切点之间的线段长)相等。

椭圆的特征性质

既然一直在说Dandelin球,那我们就先作出椭圆的Dandelin双球。

ca686b2cc37d718d2b72eb91cadbaeeb.png
图8.椭圆的Dandelin双球

如图8:其中球

和球
为椭圆的Dandelin双球,球
、球
与平面
F的切点为
,这两个球与圆锥面C的切点圆分别为
. 设P为椭圆上任一点,过
P的母线 AP
交点为
,连接
.

由刚刚让大家记住的东西,得到下面的几何关系式:

所以对于椭圆,很显然有

由圆锥面具有旋转变换的保长性知道,

为定值。

由三角形的性质

现在我们还需要确定是否对于平面F上满足到两焦点的距离等于定值

的点
K一定在椭圆上?

答案是肯定的,一种最直接的思考应该是这样的:由于椭圆是平面F上的封闭曲线,所以它将平面F分为两部分,分别称为椭圆的内部和外部,那么到椭圆两焦点的距离,是否成立这样的关系:内部<椭圆<外部?

这里,事实上引用了约当定理:平面上简单闭曲线将平面分为两个区域。简单闭曲线指将一个橡皮泥做成的圆圈剪断然后任意拉伸、弯曲,但不能相交,最后将剪断的部分缝合复原而成的闭曲线。约当定理的证明属于拓扑学的内容,上面说到的“剪断→橡皮变形→缝合复原”就是所谓的拓扑变换。下面来证明上面的关系

平面上任取一点K且K不在椭圆上,连接

,所以
或其延长线与椭圆相交于一点R,并且有

若K在椭圆内,则

若K在椭圆外,则

这就证明了上面的关系。似乎感觉上面这个关系很直接,不需要证明的样子,为啥还要花费那么大的精力去证明,有同学说上面的证明不是很简短吗?难道你连打开盖子喝口水的时间都没有吗?同学说的没错,不过我这有个更为形象的方法,形象到你只要玩过橡皮泥就行:

想象有一个橡皮泥做成的椭圆薄膜,不管怎么变形都不会破裂,现在想象椭圆薄膜变形(不能将膜上的点粘在一起哦)成圆薄膜的同时,椭圆两焦点变形到无限接近于圆心(可以看作两焦点重合于圆心位置,只不过它们不是同一个点,就像“灵魂”和身体重合但还是有区别的),那么原来在椭圆内的点依然在圆的内部,同样,在椭圆外的点仍然在圆的外部,因为对于我们的变形操作,在半径上的线段大的在变换前还是大的,那么上面的关系在圆的时候是不是容易看出来了?这就是用拓扑学解决问题的方式。

双曲线的特征性质

同样,先作出Dandelin双球。

d0486cfe27c8cbd9d730cba2bb0f65f3.png
图9.双曲线的Dandelin双球

如图9所示,球

、球
与平面F的切点为
,并设切点圆
.设P是双曲线Γ上任意一点,经过点P的母线AP与
的交点分别为
.注意到切点
的位置、切点圆
的位置,以及它们的位置情况与椭圆情形的差别,得到有关线段的长度关系是:

时,
;

时,

.

和椭圆一样的理由,

是定值,
,且在平面F上满足到两焦点的距离差的绝对值等于定值
的点
K一定在双曲线上。

抛物线的特征性质

有同学可能会问:椭圆和双曲线都有两个Dandelin球,那对只有一个Dandelin球的抛物线咋整?

很好整,正如父母养孩子,无意间就会对某个小孩更加宠爱。你看,之前对于椭圆和双曲线,都是在它们圆锥面妈妈的肚子上画两个圈,而他们平面爸爸除了两个切点就不管了。而对抛物线呢?妈妈要画圈,爸爸还要画线,真是对它宠爱至极。

同样,我们先作出抛物线的Dandelin球。

80a537f180f5167ed10daa9568788713.png
图10.抛物线的Dandelin球

如图10,球O与平面F 的切点为F' , 球O与圆锥面M的切点圆为

所在的平面记为
N,平面N与平面 F的交线为
(就是抛物线它爸画的线). 可知,轴l与平面
N垂直,
是定直线。

P是抛物线Γ上任意一点,过点P的母线AP

相交于点
G. 连接 PF' , 可知线段 PF'PG是经过球 O外一点 P的切线段,得

现在要来寻找与线段 PG长度相等的线段。

d3905bc0134758caa4885d90de1b629c.png
图11

如图11所示,过点PPH垂直于平面N,点H为垂足。再在平面N内作HQ垂直于直线

,点
Q为垂足。连接 PQ, 可知 PQ
. 注意到相交直线
PHHQ都与
垂直,可知
与由PH和
PQ所确定的平面 PHQ垂直,则经过直线l'的平面F与平面 PHQ垂直,于是,平面 PHQ与平面 F的交线 PQ就是直线PH在平面F内的射影(直线的射影仍是直线)。

由直线PH与轴l同垂直于平面N,可知直线PH与轴

平行.已知轴
与圆锥面
M的母线的夹角为θ,与平面F所成的角也为θ,可知直线 PH与圆锥面 C的母线的夹角以及与平面 F 所成的角同为θ.

Rt△PHGRt△PHQ中,∠GPH=∠QPH=θ,得|PG|=|PQ|.

因为PQ

, 点Q为垂足,所以|
PQ| 是点 P到直线
的距离。

由| PF'|=| PG|,| PG |=|PQ|,得|PF' |=| PQ |.

通过以上讨论,得出抛物线上任意一点与定点 F' 的距离等于这点与定直线

的距离。反过来,如果点
K在平面 F内,点 K与点 F' 的距离等于点K到直线l'的距离,那么也可以证明点 K一定在抛物线 Γ上。

总结一下圆锥三兄弟各自的性质:椭圆上一点到两焦点的距离之和等于常数,双曲线上一点到两焦点距离之差的绝对值为常数,抛物线上一点到焦点和准线的距离相等。

圆锥曲线的年龄——e

既然大家都是同爸同妈生的,并且都有Dandelin球,难道就没有一个东西把三者统一起来吗?就像二狗子家爸妈给它生了两兄弟大狗子和三狗子一样,这三狗兄弟就按年龄统一起来:大于二狗子年龄的是大狗子,小于二狗子年龄的是三狗子,等于二狗子年龄的就是二狗子。

你别说,还真有,正如三狗兄弟一样,大于抛物线年龄的是双曲线,小于抛物线年龄的是椭圆,等于抛物线年龄的就是抛物线。哇!这圆锥曲线三兄弟原来也是狗子呀?

“大家好,我叫做e,我是三狗兄弟圆锥曲线的年龄???不,不,我是圆锥曲线三兄弟的年龄。”,

那胖乎乎的e挠着头憨憨的开始介绍自己“嗨嗨嗨,要说我怎么将三兄弟统一起来的,其实也不难,这也得借着Dandelin球才能说明白。你看它们三兄弟都有Dandelin球,在抛物那里的时候,用一个不就搞定了吗?照葫芦画瓢也在椭圆和双曲线上用一个就是了。嗨嗨嗨,你应该差不多明白了吧!”

抛物线的特征性质相当于:抛物线上任意一点与一个定点和定直线的距离之比为1. 那么对于椭圆和抛物线上任意一点,与一个定点和定直线的距离之比又是什么样的呢?这个比值就是刚刚突然出来冒泡的e了。

我们开始照葫芦画瓢,照着抛物线里出现的那个葫芦,画出如下椭圆或双曲线的瓢

af8fc66c0c2135b9cf407f9fcf4f6457.png
图12

其中轴l与平面F夹角为

.

继续照着抛物线里的葫芦,画出这样的瓢:

紧接着,就得到

. 就有

所以e为定值。

既然年龄e已经出来了,就来说说e怎么统一圆锥曲线的特征的:

当θ<α<π/2时,截线Γ 是椭圆,这时cosθ> cosα> 0,可知

;

当0≤α<θ时,截线Γ 是双曲线,这时0<cosθ<cosα, 可知

.

总结一下这俩哥们的性质:

(1)椭圆上任意一点与定点F' 和定直线

的距离之比等于定值
e,且
;

(2)双曲线上任意一点与定点F' 和定直线

的距离之比等于定值
e,且
.

上述关于椭圆和双曲线性质的(1)(2),反正说(逆命题)也正确.

现在将圆锥曲线的统一性质总结如下:

圆锥曲线是平面内与一个定点和一条定直线的距离之比等于定值e的点所成的集合。当

时,它是椭圆;当
时,它是双曲线;当
时,它是抛物线。

有没有发现,虽然抛物线得到了父母更多宠爱,但其实它有的椭圆和双曲线都有,只不过抛物线老拿着它爸出来显摆,看看人家椭圆和抛物线多低调,人家有的东西从不拿出来炫耀,实力却强多了。所以说啊!做父母的不要偏心,溺爱某一个孩子,手心手背都是肉,可能你这是想把希望寄托于某一个孩子上,但时间会告诉你这样会适得其反。

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值