[数据分析] RFM分析方法

本文详细解读了RFM分析方法,通过计算用户最近消费时间、频率和金额,对用户进行分类并制定个性化运营策略。步骤包括数据处理、打分规则、价值评估和用户分类,帮助企业优化资源利用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

美图欣赏2022/06/08

RFM分析方法

作用:对用户分类,识别出有价值的用户,对不同价值的用户使用不同的运营决策,把公司有限的资源发挥到最大的效果(用于用户价值细分,精细化运营)

RFM是3个指标的缩写:最近1次消费时间间隔(Recency)消费频率(Frequency)消费金额(Monetary),通过3个指标对用户分类的方法称为RFM分析方法

最近1次消费时间间隔(R)是指用户最近一次消费距离现在多长时间了

消费频率(F)是指用户一段时间内消费了多少次

消费金额(M)是指用户一段时间内的消费金额

对于最近1次消费时间间隔(R),上一次消费离得越近,也就是R的值越小,用户价值越高

对于消费频率(F),购买频率越高,也就是F的值越大,用户价值越高

对于消费金额(M),消费金额越高,也就是M的值越大,用户价值越高

把这3个指标按价值从低到高排序,并把这3个指标作为坐标轴,就可以把空间分为8部分,划分8类用户如下图所示:


详解使用RFM分析方法对用户进行分类

第1步:计算R、F、M的值

要得到R、F、M这3个指标,一般需要数据的3个字段:用户ID或者用户名称、消费时间、消费金额,从这3个字段可以计算出R、F、M这3个指标

以如下原始数据为例,假设现在是2022年6月30,分析最近30天的用户

计算出RFM值

第2步:给R、F、M值按价值打分

在表中添加3列,用于对后面计算出的R、F、M3个值打分

注意:按指标的价值打分,不是按指标数值大小打分 

举例:对于最近1次消费时间间隔(R),上一次消费离得越近,也就是R的值越小,用户价值就越高

实际业务中,如何定义打分范围,要根据具体的业务来灵活掌握,没有统一的标准

各指标打分规则

根据打分规则,在最后3列填上对应的分值

第3步:计算价值平均值

分别计算出R值打分、F值打分、M值打分这3列的平均值

第4步:用户分类 

在表格里增加3列,分别用于记录R、F、M3个值是高于平均值还是低于平均值

如果某个指标的得分比价值的平均值低,标记为"低"。如果某个指标的得分比价值的平均值高,标记为"高"

然后和用户价值分层表格里定义的规则进行比较,就可以得出用户属于哪种类别

提示:坐标轴的中心可以理解为某个指标价值的平均值

通过RFM分析方法来分析用户,可以对用户进行精细化运营,不断将用户转化为重要价值用户 

RFM分析方法注意事项

1.R、F、M指标在不同业务下定义不同,要根据具体业务灵活应用

2.R、F、M按价值确定打分规则一般分为1~5分,也可以根据具体业务灵活调整

每个分值的范围要根据具体业务来定,就好比你在开车,车速控制在哪个范围,可以根据路况灵活把握

3.R、F、M这三个指标可以灵活和其他分析方法结合使用

### RFM 模型概述 RFM (Recency, Frequency, Monetary) 是一种用于客户细分和行为分析的重要工具。该模型通过三个维度来评估客户的购买行为:最近一次消费的时间(R)、消费频率(F)以及累计消费金额(M)。这些指标有助于企业识别高价值客户并制定针对性营销策略。 尽管提供的参考资料主要关注于神经网络领域的内容[^1],对于RFM模型的具体实现并未涉及。然而,基于专业知识可以提供有关如何在 MATLAB 中构建此模型的方法指导。 ### 使用MATLAB 实现RFM模型 为了在 MATLAB 中创建一个简单的 RFM 分析程序,以下是基本框架: #### 数据准备阶段 首先确保拥有包含交易记录的数据集,通常包括日期、顾客ID 和订单总额等字段。假设数据存储在一个名为 `transactions.mat` 的文件里。 ```matlab % 加载原始销售数据 load('transactions.mat'); % 假设已经存在这样的 .mat 文件 disp(head(transactions)); % 显示前几条记录查看结构 ``` #### 计算RFM值 接着计算每位用户的 R/F/M 参数: ```matlab % 设置参考时间点为最新一天之后的一天 ref_date = datetime(max(transactions.Date)) + caldays(1); % 转换日期列以便后续处理 transactions.Date = datetime(transactions.Date,'InputFormat','yyyy-MM-dd'); % 获取唯一用户列表 unique_customers = unique(transactions.CustomerID); % 初始化结果表单 rfm_table = array2table(zeros(length(unique_customers), 3), ... 'VariableNames', {'Recency', 'Frequency', 'Monetary'}, ... 'RowNames', num2cell(unique_customers)); for i = 1:length(unique_customers) cust_data = transactions(strcmp(transactions.CustomerID, unique_customers(i)), :); rfm_table.Recency{i} = days(ref_date - max(cust_data.Date)); rfm_table.Frequency{i} = height(cust_data); rfm_table.Monetary{i} = sum(cust_data.Amount); %#ok<AGROW> end ``` #### 结果可视化与解释 最后可以通过绘制直方图等方式直观展示不同分组内的客户分布情况: ```matlab figure; subplot(3,1,1); histogram(rfm_table.Recency); title('Recency Distribution'); xlabel('Days since last purchase'); ylabel('# of Customers'); subplot(3,1,2); histogram(rfm_table.Frequency); title('Purchase Frequency Distribution'); xlabel('Number of purchases'); ylabel('# of Customers'); subplot(3,1,3); histogram(log10(rfm_table.Monetary+eps)); % 对数尺度更易观察极少数高额消费者的影响 title('Logarithmic Scale Purchase Amount Distribution'); xlabel('log(Total Spend)'); ylabel('# of Customers'); ``` 上述代码片段展示了怎样利用 MATLAB 进行基础的 RFM 分析流程。当然实际应用中可能还需要考虑更多细节调整,比如异常值处理、缺失值填补等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值