[Pandas] 查看DataFrame的常用属性

导入数据

import pandas as pd
 
df = pd.DataFrame([['L123','A',0,123],
                   ['L456','A',1,456],
                   ['L437','C',0,789],
                   ['L112','B',1,741],
                   ['L211','A',0,852],
                   ['L985','B',1,963]
                  ],columns=['Material','Level','Passing','LT'])

df


1.dtypes: 查看DataFrame中各列的数据类型

df.dtypes会返回每个字段的数据类型及DataFrame整体的类型 

# 查看各字段的数据类型
df.dtypes

结果如下

Material     object
Level         object
Passing       int64
LT                int64
dtype: object

可以看到,字段'Material'和'Level'为object,其他字段都是int64 

2.values: 返回DataFrame中的数值 

# array(<所有值的列表矩阵>)
df.values

结果如下

array([['L123', 'A', 0, 123],
          ['L456', 'A', 1, 456],
          ['L437', 'C', 0, 789],
          ['L112', 'B', 1, 741],
          ['L211', 'A', 0, 852],
          ['L985', 'B', 1, 963]], dtype=object)

3.size: 返回DataFrame中元素的个数

# 元素个数  = 行数 * 列数
df.size

结果如下

24 

4.shape: 返回DataFrame的行数与列数

执行df.shape会返回一个元组,该元组的第一个元素代表行数,第二个元素代表列数

# 返回一个元组(行数,列数)
df.shape

结果如下

(6, 4) 

可以看到,上述数据框df有6行4列的数据

5.ndim: 返回DataFrame的维度数

df.ndim

结果如下

6.index: 返回DataFrame中的行索引

df.index

结果如下

RangeIndex(start=0, stop=6, step=1) 

7.columns: 返回DataFrame中的列索引

df.columns

结果如下

Index(['Material', 'Level', 'Passing', 'LT'], dtype='object') 

8.info: 返回DataFrame中的基本信息

执行df.info会显示所有数据的类型、索引情况、行列数、各字段数据类型、内存占用等

df.info

结果如下

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 4 columns):
Material    6 non-null object
Level       6 non-null object
Passing     6 non-null int64
LT          6 non-null int64
dtypes: int64(2), object(2)
memory usage: 272.0+ bytes 

9.查看DataFrame部分样本信息

df.head(): 显示DataFrame头部几行数据,默认5条,可指定条数  

# 默认查看DataFrame前5条数据
df.head()

结果如下

    Material  Level  Passing  LT
0     L123       A          0       123
1     L456       A          1       456
2     L437       C         0       789
3     L112       B         1        741
4     L211       A          0       852 

# 查看DataFrame前3条数据
df.head(3)

结果如下

    Material  Level  Passing  LT
0     L123       A          0       123
1     L456       A          1       456
2     L437       C          0       789 

df.tail(): 显示DataFrame尾部几行数据,默认5条,可指定条数  

# 默认查看DataFrame后5条数据
df.tail()

结果如下

    Material  Level  Passing  LT
1     L456       A          1        456
2     L437       C          0       789
3     L112       B          1        741
4     L211       A           0       852
5     L985       B          1       963 

# 查看DataFrame后3条数据
df.tail(3)

结果如下

    Material  Level  Passing  LT
3     L112       B          1       741
4     L211       A          0       852
5     L985       B          1       963 

df.sample(): 显示DataFrame一条随机数据,可指定条数

# 随机查看一条数据
df.sample()

结果如下

    Material  Level  Passing  LT
4     L211       A          0       852 

# 随机查看3条数据
df.sample(3)

结果如下

    Material  Level  Passing  LT
5     L985       B          1       963
1     L456       A          1       456
0     L123       A          0       123 

10.查看DataFrame的统计信息

df.describe()显示DataFrame的统计信息(只能统计数值类型的列)

'''
count:这一组数据中包含数据的个数(数量)
mean:这一组数据的平均值(平均数)
std:标准差
min:最小值
max:最大值
25%,50%,75%:百分位数,其中50%是中位数
'''
df.describe()

百分位数

如果将一组数据从小到大排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数,以Pk表示第k百分位数
Pk表示至少有k%的资料小于或等于这个数,而同时也有(100-k)%的资料大于或等于这个数

以身高为例,身高分布的第五百分位数表示有5%的人的身高小于或等于此测量值,95%的身高大于或等于此测量值 

结果如下

             Passing          LT
count  6.000000    6.000000
mean  0.500000   654.000000
std      0.547723   310.368813
min     0.000000   123.000000
25%    0.000000   527.250000
50%    0.500000   765.000000
75%    1.000000   836.250000
max    1.000000   963.000000 

df.describe()会返回一个有多行的所有数字列的统计表,每一行对应一个统计指标 

提示Tips: 如果DataFrame没有数字列,则会输出与字符相关的统计数据

import pandas as pd
 
df = pd.DataFrame([['L123','L123','A'],
                   ['L456','L456','B'],
                   ['L437','L437','C'],
                   ['L112','L112','B'],
                   ['L1212','L985','B'],
                   ['L911','L985','B']
                  ],columns=['Material','New_Material','Level'])

df 

'''
count:这一组数据中包含数据的个数(数量)
unique:表示有多少种不同的值(不重复值数)
top:最大值(按首字母排序)
freq:最大值(top)的出现频率
'''
df.describe()

结果如下

            Material  New_Material  Level
count         6                6                6
unique       6                5                3
top          L911           L985            B
freq           1                2                 4

PandasPython的一个数据分析库,其中DataFrame是一个非常常用的数据结构。DataFrame是由多个Series组成的二维表格,每个Series可以看作是一数据。下面是一些DataFrame属性和方法及其示例: 1. 属性: - df.shape:返回DataFrame的行数和数,例如:`df.shape`。 - df.index:返回DataFrame的行标签,例如:`df.index`。 - df.columns:返回DataFrame标签,例如:`df.columns`。 - df.values:返回DataFrame中的所有数据,例如:`df.values`。 2. 方法: - df.head():返回DataFrame的前几行数据,默认为前5行,例如:`df.head()`。 - df.tail():返回DataFrame的后几行数据,默认为后5行,例如:`df.tail()`。 - df.info():返回DataFrame的基本信息,包括每的数据类型、非空值的数量等,例如:`df.info()`。 - df.describe():返回DataFrame数据的统计信息,包括计数、平均值、标准差等,例如:`df.describe()`。 - df.sort_values():根据指定的值对DataFrame进行排序,例如:`df.sort_values(by='column_name')`。 - df.groupby():按照指定DataFrame进行分组,例如:`df.groupby('column_name').mean()`。 - df.dropna():删除DataFrame中的缺失值,例如:`df.dropna()`。 - df.fillna():用指定的值填充DataFrame中的缺失值,例如:`df.fillna(value=0)`。 以上仅是Pandas DataFrame的一部分属性和方法,还有很多其他的操作可以用于数据分析和处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值