本节课程是stable diffusion的安装课程,我们将详细讲解stable diffusion webui的本地安装以及stable diffusion模型与扩展的下载和安装过程。
对于stable diffusion的学习。我们遇到最多问题的地方很有可能并不是如何使用stable diffusion webui来绘制出理想的图片,而是如何顺利安装stable diffusion webui,包括软件本体的安装,扩展插件的安装,模型的下载和安装。所以,我们专门安排了这节课程剖析整个安装流程,从而协助大家快速地部署好属于自己的stable diffusion webui软件和环境。
一:stable diffusion webui安装条件
上节课程中有提到,stable diffusion webui的正常运行对硬件是有一定要求的。
-
CPU,通常无特殊要求,但对于MAC电脑或笔记本,建议M1,M2以上的处理器。
-
内存,通常推荐至少16G,如有融合模型的需求则推荐64G以上的内存。
3.硬盘,使用NVME SSD能加速模型的加载时间,由于在使用stable diffusion时可能需要下载多个模型资源,所以推荐512G以上的NVME SSD。
4. 对stable diffusion而言最重要的硬件资源是GPU。对于个人电脑,GPU也就是平常所说的显卡,stable diffusion webui对显卡有较高的要求,虽然官方文档提到需要4G以上显存的显卡或图形处理器,
而实际上,如果希望使用过程更加顺畅,最好使用6G以上显存的显卡。
另外,stable diffusion对nvidia显卡的支持更好,所以通常推荐Nvidia 10系列以上,6G以上显存的显卡。而对于AMD显卡,如果使用windows,stable diffusion的运行效率会打较大的折扣,如果运行于linux则会好一些,但是整体效率还是不如nvidia系列的显卡。
以上的显卡要求也只是对个人正常使用stable diffusion webui的基本要求,而如果有训练模型的需求,则GPU的规格要求会更高。
操作系统:
stable diffusion webui对windows,linux和macOS平台均推出了对应的版本,
windows是最常用的操作系统,我们一般建议使用windows10或Windows11
Linux操作系统在服务器上使用最多,Linux有很多发行版,Ubuntu,CentOS等常用发行版都能很好地支持stable diffusion webui,但在版本上注意不要选用较早的系统版本(例如CentOS 7),因为最新版本的stable diffusion webui对GLIBC版本有一定要求,熟悉Linux的用户应该都知道,在Linux上升级GLIBC是一件非常困难的事情,升级的风险很大,也非常容易导致整个系统不可用。当然,如果硬件资源运行于诸如CentOS 7的系统,也无法升级系统,仍然可以使用容器技术去解决stable diffusion webui的安装问题。
Mac操作系统上也可以安装stable diffusion webui,只是运行效率不及配备独立nvidia显卡的主机或服务器,MacOS运行stable diffusion webui通常建议使用M1处理器以上的mac主机或笔记本。
如果没有合适的电脑,我们可以租用云服务器。比如腾讯云与阿里云等大型云服务商均提供了性能强大的GPU服务器;另外一些有针对性的小型云服务商也专门提供了性价比很高的GPU服务器甚至是包含stable diffusion webui和comfyui预装环境的GPU服务器的租用服务。
我们课程中主要针对配备了nvidia显卡的windows10平台来讲解stable diffusion webui的使用。
windows下安装stable diffusion webui我们主要分为两大类安装方式
二:整合包方法安装
第一类方法是整合包安装方式,整合包安装简单易上手,也是我们所推荐的方式.
stable diffusion webui安装过程中实际遇到的问题绝大部份是网络问题,因为在安装和使用stable diffusion webui时,会经常需要自动联网下载相关资源,而访问下载这些资源大部分需要连接国外的网站,所以自动下载的过程可能出错,导致安装,启动和使用stable diffusion webui的时候出现意想不到的问题。
而整合包,通常将常用的资源已经下载好,所以可以很好的避免这些常见问题,另外整合包提供了更加优化的启动器和管理器,可以更方便的启动程序,管理与程序相关的模型资源,插件等。
早期,有一些专业爱好者提供了各自的stable diffusion webui整合包,比如秋叶整合包、星空整合包等。当前,秋叶整合包是使用最多,也是最受欢迎的整合包,所以我们以秋叶整合包为例来讲解,秋叶整合包可以通过搜索引擎搜索下载。
在使用秋叶整合包之前,我们可以先更新nvidia显卡驱动到最新(当然,大多数电脑已经安装),最新的nvida驱动程序需要到nvidia官网下载,我们可以在bing中搜索“nvidia驱动”,
搜索结果中找到nvidia官方页面,打开对应的链接后,手动搜索驱动项下,选择合适的显卡型号,操作系统版本,点击开始搜索按钮,
通常第一个搜索结果既是最新的驱动,点击获取下载打开页面,然后点击立即下载即可将最新的驱动安装程序下载下来,在电脑本地打开安装程序按提示一步一步操作即可。
虽然整合包的说明中提到无需安装cuda,但我们还是建议先自行安装cuda toolkit,过程很简单,我们可以在bing搜索引擎上搜索CUDA Toolkit关键字,
通常搜索结果的第一条既是nvidia官方网站对应的cuda toolkit下载页面,点击进入,然后点击页面中的Downloads Now按钮,进入下载页面,
在下载页面中,选择操作系统Windows,Version选择10,Installer Type选择exe(local),点击Download后即可将cuda toolkit安装包下载到本地。在电脑本地打开安装包按提示一步一步操作即可。
完成了一些预先的准备后,我们便可以继续执行stable diffusion webui整合包的安装,这里我们已经下载好stable diffusion webui秋叶整合包以及启动程序所需要的依赖程序dotnet,首先需要安装“启动器运行依赖-dotnet”程序,双击安装包,按提示一步一步运行即可。安装这个程序后,才能在之后顺利地运行整合包中的启动器。
接着解压sd-webui整合压缩包,然后将解压后的的的文件夹移动到合适的目录,注意目录路径中不能有中文,比如我们在d盘下创建了一个名为ai的文件夹,然后将解压的目录移动移动到该文件夹下,
,现在sd-webui的目录名比较长,我们建议将sd-webui的目录名修改一下,比如修改为sdwebui,然进入该文件夹,找到启动器程序,双击运行,
第一次运行启动器,可能会自动更新下载一些文件,完成后启动器会打开主界面,点击“一键启动”,启动器将打开一个命令行窗口,在命令行窗口可以看到启动时执行的一些操作,这个过程需要耗费一段时间,耐心等待即可,
服务成功启动后,启动器会自动打开浏览器并访问webui的网页服务地址:127.0.0.1:7860,,我们可以通过该页面提供的功能开始stable diffusion的ai绘图之旅。需要提醒的是,使用stable diffusion webui时不要关闭打开的命令行窗口程序,该窗口程序关联了stable diffusion webui的后台服务,我们在页面上进行的很多操作也会在该命令行窗口中输出对应的信息。
秋叶整合包内置了python,git,同时安装好了需要使用到的python模块,下载好了常用的模型,插件资源,这样就可以省去自行安装时,下载模型文件,插件等步骤,而这些也是因为网络问题最容易出现错误的步骤。另外,整合包提供的程序,在下载资源时,会使用国内的镜像站点,这样就能很大程度上解决连接国外网络可能出错的问题。 秋叶整合包,还提供了很多便捷的功能,比如可以通过启动器管理模型和设置选项。大家可以自己尝试。
三:手动从头安装
我们这里重点介绍的是第二类方法,完全从头安装。
从头安装耗时且可能遇到各种错误,需要有一定耐心以及一定排错能力(会使用搜索引擎即可)
从头安装能学习和积累到相关的知识和经验,对其他AI本地软件部署会有很大帮助,比如我们在AI音视频和数字人课程中使用的很多软件,这些软件的安装过程与stable diffusion webui有共通之处,而这些软件,有一些是没有现成的整合包之类的资源的,所以学习好如何从头安装stable diffusion webui,对后续的课程也会有很大的帮助。
手动从头安装主要分为四个部分
第一步:安装依赖程序
首先保证电脑上已经安装好nvidia显卡驱动以及CUDA Toolkit,安装步骤在前面已经演示,这里就不再赘述。
此外还需要安装python
python可以说是人工智能领域最重要的基础软件,很多人工智能的应用都是基于python开发,包括stable diffusion以及后续AI音视频和数字人课程中使用的绝大部分应用。所以我们最好能够掌握如何安装和使用python。
windows安装python我们推荐使用anaconda。anaconda可以管理多个python版本,并且互不干扰,anaconda也是windows 和linux平台最被推荐的python管理工具。
我们在后续AI音视频与数字人课程中,同样会安装和使用到多款程序,这些程序大部分是基于python的,我们也会使用anaconda来管理这些软件所对应的不同版本的python。
我们先演示如何安装和使用anaconda
首先需要下载anaconda程序,bing中搜索anaconda,进入anaconda官网下载页面 https://www.anaconda.com/download
这里可以点击skip registration跳过注册,然后在打开的页面中点击Download按钮下载安装包
下载完成后,双击安装包,按提示安装即可,安装完成后我们可以在windows底部的搜索框搜anaconda。会出现anaconda prompt和anaconda navigator, anaconda prompt是命令行工具,anaconda navigator则是图行化工具,我们建议大家使用命令行工具,因为命令行工具执行过程中出错的可能性更小(问题主要也是网络问题)。
需要提醒的是,在执行下面的安装步骤之前,我们需要保证能够正常连接国外网站,这样可以保证后续的过程不会因为网络问题而出现错误。
我们可以点击anaconda prompt打开命令行工具,打开的是命令行窗口。
stable diffusion webui官方推荐使用python 3.10.6,但是实际测试只要是3.10.版本,且版本大于等于3.10.6版本即可,
比如我们使用3.10.12版本的python
在anaconda prompt命令行窗口中输入命令
conda create -n sdwebui python=3.10.12创建对应版本的python环境,且命名为sdwebui,记住这个名字,我们在之后需要使用这个名字激活并进入这个环境。
命令行窗口会提示是否执行,输入Y确认即可,然后只需要耐心等待anaconda帮我们自动下载对应的python程序,配置环境即可。
配置完成后,会提示我们使用命令conda activate sdwebui激活环境,我们输入命令执行,可以看到提示符前的括号中的文字变成了sdwebui,这就代表我们当前已经进入了刚刚创建的sdwebui环境,
我们还需要安装git,git将用来下载stable diffusion webui主程序,stable diffusion webui在自动下载某些资源时也有可能会调用git。
我们可以在命令行中直接使用conda install git安装git程序到当前的sdwebui环境,输入y确认,等待自动下载安装git即可。
命令执行记录:
conda create -n sdwebui python=3.10.1
conda activate sdwebui
conda install git
第二步:安装SD WEBUI
我们需要下载stable diffusion webui程序包,stable-diffusion-webui的官方地址是github的一个项目主页地址:
https://github.com/AUTOMATIC1111/stable-diffusion-webui
我们进入这个网址,打开的页面是github典型的项目主页,在页面的右上方有一个code按钮,点击该按钮,在弹出的对话框中可以点击复制图标复制对应的git clone下载地址
然后我们需要进入刚才打开的 sdwebui环境命令行窗口,因为刚刚该环境下已经安装了git程序,我们下一步需要使用git命令来下载stable diffusion webui程序包。
使用git命令下载程序前,我们还需要切换目录,stable diffusion webui的目录路径不能包含中文,比如我们在d盘创建好了tools目录,我们计划安装stable diffusion webui到该目录下,在命令行窗口先输入d:切换到d盘,
然后可以cd空格d:\tools进入目录,接着输入命令 git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ,git clone空格后的地址是刚刚复制的stable diffusion webui的github下载地址
该命令将下载stable-diffusion-webui最新版本到当前所处的目录也就是d盘的tools目录下。注意这个过程需要访问国外网站,所以需要确保访问国外站点的连接正常,否则下载会不稳定,可能中断。
我们再补充一些关于github上下载程序的知识。我们刚刚是使用的git clone命令下载程序,除了使用git clone命令,还有另外两种方式可以下载github上的程序:
比如项目主页面可以点击Code按钮,在打开的对话框中点击Download Zip,可以使用浏览器下载最新的程序代码目录压缩包;
另外很多github项目在主页面右侧提供了Release栏目,点击进入后可以找到多个历史发布的版本,点击对应的Source code可以下载到对应版本的源码压缩包。
这两种方式对普通用户可能更友好,毕竟只需要几次鼠标点击即可完成下载,但是我们建议还是应该学会使用git clone命令来下载,因为这是最主流的方式,我们在后续AI音视频课程中会涉及到很多软件,都可以使用上述方式来下载。
使用git clone命令将自动下载完整的stable-diffusion-webui文件夹到本地,如果不是使用git clone命令,而是下载压缩包,请下载完成后先解压压缩包到相应的目录。
我们这里使用git clone命令下载好了程序目录,我们继续在sdwebui环境下的命令行窗口执行cd stable-diffusion-webui进入程序目录,然后输入webui-user.bat,
这个是程序目录中的一个批处理脚本文件,也是stable diffusion webui服务的启动脚本,输入webui-user.bat回车运行,
命令执行记录:
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
cd stable-diffusion-webui
webui-user.bat
如果是第一次运行,该批处理脚本会基于当前python环境,创建venv virtualenv,virtualenv也是python多环境管理工具,有兴趣可以上网搜索了解。创建venv virtualenv后,webui-user.bat会调用相关程序,并根据stable-diffusion-webui目录下的requirements.txt文件安装所需要依赖模块,执行该过程也请保持能正常访问国外站点,因为很多模块和文件需要从国外站点下载。相应的执行信息也会在命令行窗口输出。
如果是第一次运行,因为需要等待下载,所以需要花费一段时间,可能需要半个小时以上,如果网速尤其是连接国外站点的速度比较慢,则需要等待更长的时间,请耐心等待,等到模块下载安装完成后,stable-diffusion-webui服务程序会自动启动,第一次启动服务还可能会下载一些模型文件,也需要等待一段时间,命令行窗口中可以看到相关的提示信息,如果命令行窗口显示下面这一段文字,则说明程序已经成功启动,
该段文字的意思是我们可以通过浏览器访问127.0.0.1:7860来使用stable diffusion webui服务,启动脚本也会自动打开浏览器访问127.0.0.1:7860这个地址,浏览器访问该地址便能进入stable diffusion webui的操作页面。
和秋叶整合包默认使用深色模式不同,手动安装stable
diffusion webui后,http://127.0.0.1:7860使用的是浅色模式,如果更喜欢深色模式,则可以使用地址:http://127.0.0.1:7860?__theme=dark
第三步:下载与安装基础模型
安装完stable-diffusion-webui,在使用之前,我们还需要下载一些常用的基础模型。
目前常见的基础模型有sd 1.5,sd2.1,sdxl,这几个模型是官方模型,其绘制的图片是泛性的,能够绘制广泛场景和风格的图片,另外,官方也陆续推出了stable diffusion 3, stable diffusion 3.5等更加强大的模型。除了官方提供的基础模型,还有一些常用的模型,比如国风模型偏向古装国风人物风格。AbyssOrangeMix深渊橘模型偏向于动漫风格图片,使用这些模型绘制图片时会生成独具特色的图片。关于基础模型我们会在后面的课程详细讲解,这里大家只需要了解,不同的模型在出图时,图片风格,倾向都会有自己的特点。
stable diffusion的基础模型我们需要自行下载,在上节课中我们有讲述过常用的资源站点。
我们可以从这些站点中下载基础模型资源
比如sd 1.5,sd 2.1可以从huggingface下载
国风模型和AbyssOrangeMix深渊橘等模型可以从c站或者liblib下载。我们这里演示一下如何下载国风模型:
进入c站主页civitai.com,在上方的搜索页搜索guofeng3, 搜索结果中的卡片列表中,左上角为checkpoint则代表是大模型,这里第一个搜索结果就是guofeng3的大模型,
点击进入模型详情页,页面右侧点击Download按钮即可将模型文件下载,
下载完成后,将下载的基础模型放置到stable-diffusion-webui主程序目录中models文件夹下的Stable-diffusion子目录 即可:
我们通过浏览器访问127.0.0.1:7860地址,这个时候的模型列表中还没有显示下载的guofeng3模型,点击右侧的刷新按钮,可以看到guofeng3模型出现在了模型列表中。
以上就是大模型的下载和安装步骤,其他的大模型均可以参考上述的步骤下载和安装。
第四步:下载与安装扩展插件
扩展插件也是stable diffusion webui非常重要的组件,我们简单演示一下如何下载和安装扩展插件
比如,现在的stable diffusion webui是默认的英文界面,我们可以通过安装中文插件来切换到中文界面
扩展插件的安装方法有几种:
一是通过webui提供的界面,我们演示一下,webui提供的界面extensions标签页为扩展插件的管理页面,点击切换到该标签页,然后点击available子标签可以打开可用插件列表页,在该页面,点击load from,页面将列出可用的插件列表,
默认情况,该列表隐藏了localization语言类型插件, 我们需要将localization前复选框的勾去掉,
去掉localization前复选框的勾后,ctrl+f打开搜索框,搜索zh_CN,可以找到搜索结果中的zh_Hans Localization项目,这个就是中文语言插件,点击右侧的install按钮,就可以自动安装该插件,安装过程需要下载一些文件,我们耐心等待安装完成即可,
安装完成后,点击Settings标签页进入设置标签页,选择User Interface,找到localiztion栏,点开下拉框,我们发现没有出现中文语言选择项,点击刷新按钮后仍然没有出现中文语言选项。
这是因为我们的插件虽然已经安装,但还没有启用,回到extensions标签页,点击installed打开已安装插件列表页,可以看到最下面的一个项目即是我们刚刚安装的中文插件,但该项目前面的复选框没有打勾,说明该插件还没有启用,勾选该复选框,
然后点击apply and restart ui按钮重载页面,重载页面完成后再次进入settings标签页下的User interface,这个时候点开localization下拉列表,就可以看到zh_cn选项,选择该项,点击页面上方的APPLY settings按钮应用设置,然后点击reload ui
重载ui界面,重载ui界面可能需要等待30秒到1分钟左右的时间,重载页面完成后可以看到,stable diffusion webui已经切换为了中文界面。
第二种安装扩展插件的方法是先自行下载扩展插件目录,比如使用git或者其他方式下载好插件程序文件夹。然后将目录直接拷贝或移动到stable diffusion webui主程序文件夹下的extensions目录中。
我们用第二种方法演示一下图库浏览器插件的安装,这个插件在后面的课程中会经常使用到。我们先访问这个插件的官方地址
https://github.com/AlUlkesh/stable-diffusion-webui-images-browser,这是一个github项目页地址,我们按之前讲述的下载程序目录的方法,点击code按钮,选择Download zip,将程序目录压缩包下载到本地,然后本地解压下载的压缩包,再将解压后的目录拷贝到stable diffusion webui主程序目录下的extensions目录中,
这里可以看到,刚刚通过stable diffusion webui扩展标签页安装的中文语言包插件目录也是自动下载并放置到该目录。插件目录拷贝到extensions文件夹后,我们还需要重启一下ui界面,我们可以通过点击扩展标签页已安装项目下的“应用并重启用户界面”按钮重新启动stable diffusion webui用户界面,
等待重启完成,可以看到,现在的页面中增加了图库浏览器标签页,图库浏览器插件提供的功能均是在该标签页下操作。
这里还需要特别提醒,我们刚刚演示了stable diffusion webui主程序的下载、安装和启动以及模型下载和安装,扩展插件下载和安装,这些过程都需要保证能顺利访问国外站点,因为很多文件的下载都需要连接到国外站点。网络连接的正常是这些步骤能顺利执行的前提。
好了,本节课的课程到这里就结束了。我们做一下总结,本节课程,我们详细讲解了stable diffusion webui的两种安装方法。对于stable diffusion webui,一般来说,使用整合包是最推荐的方式,整合包安装方式最简单,也最省心。但是,我们还是建议大家学会自行从头安装stable diffusion webui,因为安装的过程能学习到很多有用的知识,这些知识也会为后续学习ai音视频处理的课程打下基础。另外,整合包提供了模型和插件管理功能,非常方便,但学习如何自行安装模型和插件也非常重要,因为有的时候,有些想要用的插件,整合包中可能无法第一时间提供。我们可以自行下载和安装。 另外,整合包通常也不能第一时间提供最新的stable diffusion webui,学会了自行安装,如果需要使用最新的stable diffusion webui,以上面的安装方式为例,我们只需用在sdwebui的conda命令行环境,在stable diffusion webui主目录使用git pull命令拉取最新的程序目录即可。
学习完stable diffusion webui的安装,我们便可以真正开始实践和学习如何使用stable diffusion webui来绘制理想的图片,在后续的课程我们会陆续学习文生图,图生图,大模型,lora模型,lycoris模型,embeddings,hypernetwork的知识,然后我们会对stable diffusion最重要的controlnet插件中的各种控制类型一一剖析和讲解,学习完这些知识,大家便能深度理解stable diffusion webui的优势和精髓,也就能更好地利用stable diffusion webui来完成各种绘图与数据处理任务。