Falcon Mamba是由阿布扎比的Technology Innovation Institute (TII)开发并基于TII Falcon Mamba 7B License 1.0的开放获取模型。该模型是开放获取的,所以任何人都可以在 Hugging Face 生态系统中这里使用它进行研究或应用。
Falcon Mambahttps://falconllm.tii.ae/tii-releases-first-sslm-with-falcon-mamba-7b.html
Technology Innovation Institute (TII)https://www.tii.ae/ai-and-digital-science
TII Falcon Mamba 7B License 1.0https://falconllm.tii.ae/falcon-mamba-7b-terms-and-conditions.html
falcon-mamba-7bhttps://hf.co/tiiuae/falcon-mamba-7b
在这篇博客中,我们将深入模型的设计决策、探究模型与其他现有的 SoTA 模型相比的竞争力,以及如何在 Hugging Face 生态系统中使用它。
第一款通用的大规模纯 Mamba 模型
目前,所有顶级大型语言模型都使用基于注意力机制的 Transformer 架构。然而,由于计算和内存成本随序列长度增加而增加,注意力机制在处理大序列时存在根本性的局限性。状态空间语言模型 (SSLMs) 等各种替代架构尝试解决序列扩展的限制,但在性能上仍不及最先进的 Transformer 架构模型。
通过 Falcon Mamba,我们证明了序列扩展的限制确实可以在不损失性能的情况下克服。Falcon Mamba 基于原始的 Mamba 架构,该架构在Mamba: Linear-Time Sequence Modeling with Selective State Spaces中提出,并增加了额外的 RMS 标准化层以确保大规模稳定训练。这种架构选择确保 Falcon Mamba:
Mamba: Linear-Time Sequence Modeling with Selective State Spaceshttps://arxiv.org/abs/2312.00752
能够处理任意长度的序列,而不增加内存存储,特别是适用于单个 A10 24GB GPU。
生成新令牌的时间是恒定的,不论上下文的大小。
模型训练
Falcon Mamba 训练所用的数据量约为 5500GT,主要包括经过精选的网络数据,并补充了来自公开源的高质量技术和代码数据。我们在大部分训练过程中使用恒定的学习率,随后进行了一个相对较短的学习率衰减阶段。在最后这个阶段,我们还添加了一小部分高质量的策划数据,以进一步提高模型性能。
模型评估
我们使用 lm-evaluation-harness
包在新排行榜版本的所有基准上评估我们的模型,然后使用 Hugging Face 分数规范化方法规范化评估结果。model name``IFEval``BBH``MATH LvL5``GPQA``MUSR``MMLU-PRO``Average
model name | IFEval | BBH | MATH LvL5 | GPQA | MUSR | MMLU-PRO | Average |
---|---|---|---|---|---|---|---|
Pure SSM models | |||||||
Falcon Mamba-7B | 33.36 | 19.88 | 3.63 | 8.05 | 10.86 | 14.47 | 15.04 |
TRI-ML/mamba-7b-rw * | 22.46 | 6.71 | 0.45 | 1.12 | 5.51 | 1.69 | 6.25 |
Hybrid SSM-attention models | |||||||
recurrentgemma-9b | 30.76 | 14.80 | 4.83 | 4.70 | 6.60 | 17.88 | 13.20 |
Zyphra/Zamba-7B-v1 * | 24.06 | 21.12 | 3.32 | 3.03 | 7.74 | 16.02 | 12.55 |
Transformer models | |||||||
Falcon2-11B | 32.61 | 21.94 | 2.34 | 2.80 | 7.53 | 15.44 | 13.78 |
Meta-Llama-3-8B | 14.55 | 24.50 | 3.25 | 7.38 | 6.24 | 24.55 | 13.41 |
Meta-Llama-3.1-8B | 12.70 | 25.29 | 4.61 | 6.15 | 8.98 | 24.95 | 13.78 |
Mistral-7B-v0.1 | 23.86 | 22.02 | 2.49 | 5.59 | 10.68 | 22.36 | 14.50 |
Mistral-Nemo-Base-2407 (12B) | 16.83 | 29.37 | 4.98 | 5.82 | 6.52 | 27.46 | 15.08 |
gemma-7B | 26.59 | 21.12 | 6.42 | 4.92 | 10.98 | 21.64 | 15.28 |
此外,我们使用 lighteval
工具在 LLM 排行榜第一版的基准测试上对模型进行了评估。model name``ARC``HellaSwag``MMLU``Winogrande``TruthfulQA``GSM8K``Average
model name | ARC | HellaSwag | MMLU | Winogrande | TruthfulQA | GSM8K | Average |
---|---|---|---|---|---|---|---|
Pure SSM models | |||||||
Falcon Mamba-7B * | 62.03 | 80.82 | 62.11 | 73.64 | 53.42 | 52.54 | 64.09 |
TRI-ML/mamba-7b-rw * | 51.25 | 80.85 | 33.41 | 71.11 | 32.08 | 4.70 | 45.52 |
Hybrid SSM-attention models | |||||||
recurrentgemma-9b ** | 52.00 | 80.40 | 60.50 | 73.60 | 38.60 | 42.60 | 57.95 |
Zyphra/Zamba-7B-v1 * | 56.14 | 82.23 | 58.11 | 79.87 | 52.88 | 30.78 | 60.00 |
Transformer models | |||||||
Falcon2-11B | 59.73 | 82.91 | 58.37 | 78.30 | 52.56 | 53.83 | 64.28 |
Meta-Llama-3-8B | 60.24 | 82.23 | 66.70 | 78.45 | 42.93 | 45.19 | 62.62 |
Meta-Llama-3.1-8B | 58.53 | 82.13 | 66.43 | 74.35 | 44.29 | 47.92 | 62.28 |
Mistral-7B-v0.1 | 59.98 | 83.31 | 64.16 | 78.37 | 42.15 | 37.83 | 60.97 |
gemma-7B | 61.09 | 82.20 | 64.56 | 79.01 | 44.79 | 50.87 | 63.75 |
对于用 星号 标记的模型,我们内部评估了任务; 而对于标有两个 星号 的模型,结果来自论文或模型卡片。
处理大规模序列
基于 SSM (状态空间模型) 在处理大规模序列方面理论上的效率,我们使用optimum-benchmark库比较了 Falcon Mamba 与流行的 Transformer 模型在内存使用和生成吞吐量上的差异。为了公平比较,我们调整了所有 Transformer 模型的词汇大小以匹配 Falcon Mamba,因为这对模型的内存需求有很大影响。
optimum-benchmarkhttps://github.com/huggingface/optimum-benchmark
在介绍结果之前,首先讨论提示 (prefill) 和生成 (decode) 部分序列的区别。我们将看到,对于状态空间模型而言,prefill 的细节比 Transformer 模型更为重要。当 Transformer 生成下一个令牌时,它需要关注上下文中所有之前令牌的键和值。这意味着内存需求和生成时间都随上下文长度线性增长。状态空间模型仅关注并存储其循环状态,因此不需要额外的内存或时间来生成大序列。虽然这解释了 SSM 在解码阶段相对于 Transformer 的优势,但 prefill 阶段需要额外努力以充分利用 SSM 架构。
prefill 的标准方法是并行处理整个提示,以充分利用 GPU。这种方法在optimum-benchmark库中被使用,并被我们称为并行 prefill。并行 prefill 需要在内存中存储提示中每个令牌的隐藏状态。对于 Transformer,这额外的内存主要由存储的 KV 缓存所占据。对于 SSM 模型,不需要缓存,存储隐藏状态的内存成为与提示长度成比例的唯一组成部分。结果,内存需求将随提示长度扩展,SSM 模型将失去处理任意长序列的能力,与 Transformer 类似。
optimum-benchmarkhttps://github.com/huggingface/optimum-benchmark
另一种 prefill 方法是逐令牌处理提示,我们将其称为 顺序 prefill 。类似于序列并行性,它也可以在更大的提示块上执行,而不是单个令牌,以更好地利用 GPU。虽然对于 Transformer 来说,顺序 prefill 几乎没有意义,但它让 SSM 模型重新获得了处理任意长提示的可能性。
基于这些考虑,我们首先测试了单个 24GB A10 GPU 可以支持的最大序列长度,具体结果请见下方的图表。批处理大小固定为 1,我们使用 float32 精度。即使对于并行 prefill,Falcon Mamba 也能适应比 Transformer 更大的序列,而在顺序 prefill 中,它释放了全部潜力,可以处理任意长的提示。
接下来,我们在提示长度为 1 且生成高达 130k 令牌的设置中测量生成吞吐量,使用批量大小 1 和 H100 GPU。结果报告在下方的图表中。我们观察到,我们的 Falcon Mamba 在恒定的吞吐量下生成所有令牌,且 CUDA 峰值内存没有增加。对于 Transformer 模型,峰值内存随生成令牌数的增加而增长,生成速度也随之减慢。

接下来,我们在使用单个 H100 GPU 和批量大小为 1 的设置中,测量了提示长度为 1 且生成高达 130,000 个令牌的生成吞吐量。结果显示在下方的图表中。我们观察到,我们的 Falcon Mamba 能够以恒定的吞吐量生成所有令牌,并且 CUDA 峰值内存没有任何增加。对于 Transformer 模型,随着生成令牌数量的增加,峰值内存增长,生成速度减慢。

在 Hugging Face transformers 中如何使用 Falcon Mamba?
Falcon Mamba 架构将在下一个版本的 Hugging Face transformers 库 (>4.45.0) 中提供。要使用该模型,请确保安装了最新版本的 Hugging Face transformers 或从源代码安装库。
Falcon Mamba 与 Hugging Face 提供的大多数 API 兼容,您可能已经熟悉了,如 AutoModelForCausalLM
或 pipeline
:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "tiiuae/falcon-mamba-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
inputs = tokenizer("Hello world, today", return_tensors="pt").to(0)
output = model.generate(**inputs, max_new_tokens=100, do_sample=True)
print(tokenizer.decode(Output[0], skip_special_tokens=True))
由于模型较大,它还支持诸如 bitsandbytes
量化的特性,以便在较小的 GPU 内存限制下运行模型,例如:
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
model_id = "tiiuae/falcon-mamba-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config)
inputs = tokenizer("Hello world, today", return_tensors="pt").to(0)
output = model.generate(**inputs, max_new_tokens=100, do_sample=True)
print(tokenizer.decode(output[0], skip_special_tokens=True))
我们很高兴继续介绍 Falcon Mamba 的指令调优版本,该版本已通过额外的 50 亿令牌的监督微调 (SFT) 数据进行了微调。这种扩展训练增强了模型执行指令任务的精确性和有效性。您可以通过我们的演示体验指令模型的功能,演示可在此处找到。对于聊天模板,我们使用以下格式:
Hugging Face Spaceshttps://hf.co/spaces/tiiuae/falcon-mamba-playground
<|im_start|>user
prompt<|im_end|>
<|im_start|>assistant
您也可以选择使用基础模型及其指令模型的 4 位转换版本。确保您有权访问与 bitsandbytes
库兼容的 GPU 来运行量化模型。
基础模型https://hf.co/tiiuae/falcon-mamba-7b-4bit
指令模型https://hf.co/tiiuae/falcon-mamba-7b-instruct-4bit
您还可以使用 torch.compile
实现更快的推理; 只需在加载模型后调用 model = torch.compile(model)
。
致谢
我们感谢 Hugging Face 团队在整合过程中提供的无缝支持,特别鸣谢以下人员:
Alina Lozovskaya和Clementine Fourrier帮助我们在排行榜上评估模型https://hf.co/alozowskihttps://hf.co/clefourrier
Arthur Zucker负责 transformers 的整合https://hf.co/ArthurZ
Vaibhav Srivastav,hysts和Omar Sanseviero在 Hub 相关问题上提供的支持https://hf.co/reach-vbhttps://hf.co/hystshttps://hf.co/osanseviero
作者还要感谢 Tri Dao 和 Albert Gu 将 Mamba 架构实现并开源给社区。
英文原文:https://hf.co/blog/falconmamba
原文作者: Jingwei Zuo, Maksim Velikanov, Rhaiem, Ilyas Chahed, Younes Belkada, Guillaume Kunsch
译者: Evinci