时序数据学习笔记(八)

本文介绍了SARIMA模型,详细讲述了数据平稳性测试、数据差异化、季节性差异、参数配置以及模型验证过程,通过实例展示了SARIMA在时序数据分析中的应用。
摘要由CSDN通过智能技术生成

一、季节性自回归综合移动平均(SARIMA)模型

        季节性自回归综合移动平均(SARIMA)模型,是在ARIMA模型的基础上引入了周期循环识别的能力,同时保留了ARIMA不对数据平稳性要求的特点。

二、SARIMA模型学习

1、数据平稳性相关测试

        通过ADF可以发现原始数据不平稳。

df = pd.read_csv('jj.csv')
df_adf=adfuller(df['data'])
print(df_adf[0])#ADF Statistic
print(df_adf[1])#p-value

 ADF Statistic:2.7420165734574815

p-value:1.0

 2、数据差异化

        差异化后通过ADF发现数据仍不平稳

diff_df=np.diff(df['data'],n=1)

diff_df_adf=adfuller(diff_df)
print(diff_df_adf[0])#ADF Statistic
print(diff_df_adf[1])#p-value

ADF Statistic:-0.4074097636380416

p-value:0.9088542416911314

 3、查看数据情况

        通过查看数据情况可以发现,数据持续呈增长趋势,并且存在周期情况


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值