一、季节性自回归综合移动平均(SARIMA)模型
季节性自回归综合移动平均(SARIMA)模型,是在ARIMA模型的基础上引入了周期循环识别的能力,同时保留了ARIMA不对数据平稳性要求的特点。
二、SARIMA模型学习
1、数据平稳性相关测试
通过ADF可以发现原始数据不平稳。
df = pd.read_csv('jj.csv')
df_adf=adfuller(df['data'])
print(df_adf[0])#ADF Statistic
print(df_adf[1])#p-value
ADF Statistic:2.7420165734574815
p-value:1.0
2、数据差异化
差异化后通过ADF发现数据仍不平稳
diff_df=np.diff(df['data'],n=1)
diff_df_adf=adfuller(diff_df)
print(diff_df_adf[0])#ADF Statistic
print(diff_df_adf[1])#p-value
ADF Statistic:-0.4074097636380416
p-value:0.9088542416911314
3、查看数据情况
通过查看数据情况可以发现,数据持续呈增长趋势,并且存在周期情况