时序数据学习笔记(十)

本文介绍了向量自回归(VAR)模型在时序数据预测中的使用,包括数据平稳性处理、参数选择、Granger因果检验及残差分析。通过美国GDP中realdpi与realcons数据的案例,展示了如何运用VAR模型进行数据预测,并对比了预测效果。
摘要由CSDN通过智能技术生成

一、向量自回归模型(VAR)

        VAR 模型可以看作是AR模型的推广,以允许多个时间序列的预测,VAR模型也要求每个时间序列都是平稳的,其原理是假设两个时间序列的过去值都对另一个时间序列有显著的预测作用。

        VAR模型的使用流程为:先测试数据组内数据的平稳性,如果不平稳使用差异化处理,当数据组内的数据都平稳时;然后对数据组进行AIC排序,获取最有参数组后,再使用granger因果检验判断数据组中的数据是否相互间存在关系。

        如果因果检验为无关系,则此数据无法使用VAR模型进行预测,此时可以转为使用SARIMAX 模型,反之则可使用VAR模型。

        granger 【格兰杰】因果检验(统计检验):帮助我们验证两个时间序列相互影响的假设,格兰杰因果关系检验仅限于预测因果关系,因为我们只是确定一个时间序列的过去值在预测另一个时间序列时是否具有统计学意义。

二、模型试用

1、选择数据维度

        根据对美国GDP数据各维度趋势图观测,可以发现realdpi与realcons趋势相似,因此此次VAR模型使用这两个维度数据进行;

 2、数据稳定性处理

 a、ADF判断

        两组数据的P值皆大于0.05,因此两组数据都非平稳

ad_fuller_result_1 = adfuller(macro_econ_data['realdpi'])
print(f'ADF Statistic: {ad_fuller_result_1[0]}')
print(f'p-value: {ad_fuller_result_1[1]}')

ad_fuller_result_2 = adfuller(macro_econ_data['realcons'])
print(f'ADF Statistic: {ad_fuller_result_2[0]}')
print(f'p-value: {ad_fuller_result_2[1]}')

realdpi ADF Statistic: 2.9860253519546873
realdpi p-value: 1.0
realcons ADF Statistic: 1.5499123380509545
realcons p-value: 0.9976992503412904

 b、差异化处理

        经过差异化处理后,数据呈平稳性,可以进行下一步P阶值查找&#

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值