spark 读取csv文件,文件含有json数据

spark.read.option("header", ”true")
      .option("nullValue", "\\N")  // null值设置
      .option("escape", "\"") // 设置用于在已引用的值内转义引号的单个字符。
      .option("quoteAll", "true")
      .option("sep", ",")
      .csv(csv_path) 

Apache Spark 是一个强大的大数据处理框架,它支持从各种数据源高效地读取数据文件Spark 提供了多种方式来加载数据,包括但不限于: 1. **文本文件**(textFile):这是最基本的文件加载方式,适用于文本格式的数据,如 CSV、Tsv等。例如: ```scala val lines = spark.read.text("path/to/your/textfile.csv") ``` 2. **CSV文件**(csv):Spark也提供了专门读取CSV格式的函数,可以直接解析: ```scala val df = spark.read.format("csv").option("header", "true").load("path/to/csv") ``` 这里设置了`header`为`true`表示第一行是列名。 3. **JSON文件**(json):对于JSON数据,可以直接使用`json`格式加载: ```scala val df = spark.read.json("path/to/jsonfile.json") ``` 4. **Parquet或ORC**:这两种是列式存储格式,用于优化读写性能,尤其适合大量数据: ```scala val df = spark.read.parquet("path/to/parquetfile.parquet") ``` 5. **Hadoop InputFormat**:可以读取HDFS或其他Hadoop支持的文件系统中的数据: ```scala val df = spark.read.format("hadoop").load("hdfs://path/to/data") ``` 6. **JDBC/ODBC**:如果数据存储在数据库中,可以通过连接驱动器加载: ```scala val df = spark.read.format("jdbc").options(Map( "url" -> "jdbc:mysql://url", "dbtable" -> "your_table", "user" -> "username", "password" -> "password" )).load() ``` 在使用这些方法时,记得根据你的数据源和格式选择合适的加载方式,并可能需要调整参数来适应特定的数据格式和需求。如果你有更具体的问题,比如如何连接到特定的数据源,或者关于数据读取的最佳实践,可以继续提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值