ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks 2018 (ESRGAN:增强的超分辨率生成对抗网络)
1.介绍
-
在单图像超分辨率任务中生成逼真的纹理。
-
提出了一种 Residual-in-Residual Dense Block (RRDB) 的网络单元,在这个单元中,去掉了 BN(Batch Norm)层。
-
文章对感知域损失进行改进,使用激活前的特征,这样可以为亮度一致性和纹理恢复提供更强的监督。在这些改进的帮助下,ESRGAN 得到了更好的视觉质量以及更逼真和自然的纹理。
1.1SRGAN
- 基于 PSNR(峰值信噪比) 指标的模型会倾向于生成过度平滑的结果,这些结果缺少必要的高频信息。
- 感知域的损失函数提出来用于在特征空间(instead of 像素空间)中优化超分辨率模型;
- SRGAN 模型极大地提升了超分辨率结果的视觉质量。但是 SRGAN 模型得到的图像和 GT 图像仍有很大的差距。
1.2ESRGAN
-
网络的基本单元从基本的残差单元变为 Residual-in-Residual Dense Block (RRDB);
-
GAN 网络改进为 Relativistic average GAN (RaGAN);
-
改进感知域损失函数,使用激活前的 VGG 特征,这个改进会提供更尖锐的边缘和更符合视觉的结果。
2.网络结构
-
对生成器G进行改进
- 去掉所有的 BN 层;
- 把原始的 block 变为 Residual-in-Residual Dense Block (RRDB),这个 block 结合了多层的残差网络和密集连接。
-
对于不同的基于 PSNR 的任务(包括超分辨率和去模糊)来说,去掉 BN 层已经被证明会提高表现和减小计算复杂度。
-
判别器D采用的是VGG网络