随机变数的标准化

随机变数的标准化

  • 描述
    由随机变数X经过简单计算得到的随机变数Z,其E(Z) = 0, s(Z) = 1(标准差)。这一过程被称为随机变数的标准化。
    在这里插入图片描述
  • Z的期待值与标准差
    上面的式子展开:
    在这里插入图片描述
    根据aX+b的期望公式,
    在这里插入图片描述
    并结合Z的展开式,可以得到Z的期望为:
    在这里插入图片描述
    根据aX+b的标准差公式:
    在这里插入图片描述

并结合Z的展开式,可以得到Z的标准差公式为:
在这里插入图片描述

  • 由于经标准化后的随机变量的数学期望为0、方差为1,从而使在许多问题中易于处理
Halcon是一套强大的机器视觉库,广泛应用于工业自动化、质量检测等领域。对于变量的初始化操作,在Halcon中有多种方法实现,以下是几种常见的场景及对应的代码示例: ### 场景一:标量变量初始化 如果需要初始化简单的标量值(如整型、浮点型),可以直接赋值: ```hdevelop * 初始化一个整数值 row := 10 * 初始化一个浮点数 angle := 3.14 ``` ### 场景二:数组变量初始化 如果是对数组类型的变量进行初始化,则可以利用`gen_empty_obj()`或者其他生成函数创建空对象后再填充数据;也可以直接构造所需内容: ```hdevelop * 使用concat_tuples构建包含元素{1,2,3}的元组(类似数组) my_array := concat_tuples([1], [2,3]) * 或者逐步添加单个元素到初始为空的tuple中去 empty_tuple := [] extended_tuple := concat_tuples(empty_tuple,[5]) final_result := concat_tuples(extended_tuple,[67]) * 结果为[5,67] ``` ### 场景三:图像处理相关的变量初始化 针对特定的数据结构比如Image等,往往需要用到专门的功能来进行设置初识状态或者分配空间大小: ```hdevelop * 创建一幅空白灰度图片,默认尺寸可自定例如240x320像素宽高 dev_create_window (0, 0, 512, 512, 'black') gen_image_const (Image, 'byte', 240, 320) * 定义区域Region为整个画面范围矩形框内部分区域作为兴趣ROI gen_rectangle1 (Rectangle1, 10, 10, 50, 50) ``` 以上只是简单列举了几种情况下的halcon控制变量初始化方式的实际例子说明文档。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值