问题描述
王海洋是一个坚强乐观的中国青年。虽然出生和成长在北方内陆城市哈尔滨,但他对无边无际的海洋有着深厚的爱和向往。毕业后,他来到一个沿海城市,在一家海运公司找到了一份工作。在那里,他在一艘货轮上担任领航员,开始了他的新生活。
王海洋所操作的货轮,在6个港口之间航行,9条航线。第一眼看到他的航海图,上面的 6 个港口和 9 条路线让他想起了他在大学课堂上学习的图论。就像莱昂哈德·欧拉(Leonhard Euler)解决克诺格斯堡七桥的方法一样,王海洋把航海图看作是图论的图。他将 6 个端口视为 6 个节点,将 9 条路线视为图的 9 条边。该图如下所示。
根据图论,与节点相关的边数定义为该节点的度数。
王海洋看着图想,如果排列起来,图G的所有节点的度数可以形成这样一个序列:4、4、3、3、2、2,称为图的度数序列。当然,任何简单图的度数序列(根据图论,没有任何平行边或环的图是简单图)是非负整数序列吗?
王海洋是一个深思熟虑的人,凡是能引起他兴趣的科学问题,他都会深思熟虑。所以像往常一样,他也对这个问题进行了进一步的思考,众所周知,任何一个简单的图总是对应一个非负整数序列。但是一个非负整数序列是否总是对应一个简单图的度数序列呢?也就是说,如果给定一个非负整数序列,我们确定可以根据它画一个简单的图吗?
让我们提出这样一个定义:假设一个非负整数序列是一个没有任何平行边或环的图的度数序列,即简单图,则该序列是draw-possible,否则,non-draw-possible . 现在王海洋面临的问题是如何检验一个非负整数序列是否可绘制。由于王海洋没有学过算法设计课程,他很难解决这样的问题。你能帮助他吗?
输入
输入的第一行包含一个整数T,表示测试用例的数量。在每种情况下,都有 n+1 个数字;first是一个整数n(n<1000),表示序列中有n个整数;然后跟n个整数,表示度数序列的个数。
输出
对于每种情况,答案应该是“yse”或“no”,表明这种情况是“可能绘制”或“不可绘制”
样本输入
2
6 4 4 3 3 2 2
4 2 1 1 1
样本输出
yes
no
思想: 并查集 + havel–hakimi算法
一个点的度,一定是由其它点给它的
将度数列从大到小排序,例如, a[6] = {4, 4, 3, 3, 2, 2},
第一个a[0] = 4, 则a[0]之后四个数字,全部减一,得到a[6] = {4, 3, 2, 2, 1, 2}, 应为第一个点的度数已经从其它点那剪掉了,从a[1]开始从大到小排序。
第二个a[1] = 3, 则a[1]之后三个数字,全部减一,得到a[6] = {4, 3, 1, 1, 0, 2}
从a[2]开始排序: a[6] = {4, 3, 2, 1, 1, 0}
第三个a[2] = 2, 则a[2]之后的两个数字,全部减一,得到a[6] = {4, 3, 2, 0, 0}
之后由于下一个最大的点的度数为0,意味着之前的度数是可以从其他的点中得到的,这个度数列是可以构成简单图的。
若在上诉步骤中,有减出来是负数,则说明是不能构成简单图的。
记录1:之前写为sort(a + i, a + i + n, greater< int > ()); 一直wa,正确的写法: sort(a + i, a + n; greater< int >() );
sort(数组起始地址,结束地址,…)
#include<bits/stdc++.h>
using namespace std;
int a[1005];
int main() {
int T;