神经关系推断 NRI: Neural Relational Inference for Interacting Systems初探(附加了一小部分VAE)

这篇博客介绍了神经关系推断(NRI)的概念,它用于从现有数据中估计离散的图结构,以辅助序列预测。通过无监督方式学习,NRI使用VAE框架来生成latent graph,并通过encoder-decoder架构预测未来节点轨迹和边的关系。文章深入探讨了目标函数,包括重建损失和KL损失,并详细解析了encoder和decoder的设计。NRI的边特征被赋予了节点间关系的含义,增强了信息传递和重构的能力。
摘要由CSDN通过智能技术生成

总说

作为从来没有接触过序列预测的我来说,看到这个是有点难度哈。然而经过我钻研了几天,终于基本看明白。太有意思了!!!!!!!!!!!!!
论文主要是,根据已有的数据,显示地估计出内在的离散的graph结构,用graph结构作为引导,更好的进行序列预测,而且全程是无监督的方式,来获得graph

其实普通的预测序列的模型,比如LSTM之类的也可以预测,这种方法是隐式学习graph的方法。

论文框架

关注问题:

  1. 已知多组节点的轨迹,预测未来的节点轨迹以及节点的连边,所有的轨迹遵循相同的动力学。
  2. 节点和连边之间有不同的种类(比如,有大小不一的小球,小球和小球之间连接着不同种类的弹簧)。

在这里插入图片描述
简单来说,采用VAE框架,前面encoder出latent graph的采样,然后decoder利用这个latent graph以及 x 1 , ⋯   , x t x_1, \cdots, x^t x1,,xt来获取 Δ x t , ⋯ \Delta x^t,\cdots Δxt,。decoder不是直接预测 x t + 1 x^{t+1} xt+1。就是利用了残差。

目标函数

在这里插入图片描述
前者就是重建损失,VAE是 x x x通过压缩,得到 latent variable q ϕ ( z ∣ x ) q_{\phi}(z|x) qϕ(zx),然后我们根据这个压缩的信息 z z z,重建出 x x x。也就是,似然函数loss E q ϕ ( z ∣ x ) [ log ⁡ p θ ( x ∣ z ) ] \mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] Eqϕ(zx)[logpθ(xz)]。后者是希望latent variable尽量符合先验分布。一般来说,对于自然图像之类的,一般可认为其符合高斯分布,即 p θ ( z ) p_{\theta}(z) pθ(z)符合高斯分布。KL损失会让我们encoder预测的分布 q ϕ ( z ∣ x ) q_{\phi}(z|x) qϕ(zx)尽量往先验分布拉。

重建损失

在这里插入图片描述
因为VAE里面都是概率分布的loss,重建损失也是似然函数loss,根据概率分布的角度,ground-truth x t x^t x

  • 9
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值