小希的迷宫(并查集)--HDU1272

这篇博客介绍了一个使用并查集算法解决图的联通性问题的题目。作者指出,题目中可能存在输入节点从非1开始的情况以及0节点0边的合法图形,并提供了二维数组来计数节点的方法。关键在于判断是否存在回路以及节点数是否等于边数加1,以确保图是简单图。代码中展示了如何实现并查集和判断条件,最终输出Yes或No。
摘要由CSDN通过智能技术生成

题目链接

在这里插入图片描述在这里插入图片描述

这个题使用的算法是并查集。

这个题本身并不难,但我不会STL的map,所以数节点个数我就使用了二维数组,所以最好的题解还可以继续补充,这个题一个坑是它的输入结点不一定是从1开始的,也可能从其他数字开始,所以结点个数不是输入的最大数字,第二个坑是,根据图的定义,一个0结点0边的图形也是合法图,所以对于单独一个0 0输入我们也要输出Yes。
写题过程其实是构造数的过程,我们这里把根节点称为老大,如果输入的两个房间数我们发现它的老大是一样的,也就是它本身就是联通的,那么我们就知道如果将他们俩再直接连接就意味着会产生回路,就不符合题目要求了,这里我用flag标志,还有一个判定条件是结点个数=边个数+1,只有这样它才可能是符合小希要求的对于任意两个结点都只有唯一联通路径的简单图。

代码如下:

#include<bits/stdc++.h>
using namespace std;
int room[100005][2];
int ifind(int x)
{
	while(room[x][0]!=x)
	x=room[x][0];
	return x;
}
void mercy(int a,int b)
{
	int q=ifind(a);
	int p=ifind(b);
	if(q!=p)
	room[q][0]=p;
}
int main()
{
	int a,b,ans=0;;
	int flag=1;
	for(int i=1;i<=100005;i++)
	{
		room[i][0]=i;
		room[i][1]=0;
	}
	int node_c=0;//一共有多少结点 
	while(cin>>a>>b)
	{
		if(a==0&&b==0)
		{
			//cout<<flag<<" "<<node_c<<" "<<ans<<endl;
			if(node_c==0)//如果只输入0 0也要输出Yes 
			node_c=1;
			if(flag&&ans==node_c-1)
			cout<<"Yes"<<endl;
			else
			cout<<"No"<<endl;
			getchar();
			for(int i=1;i<=100005;i++)
			{
				room[i][0]=i;
				room[i][1]=0;
			} 
			flag=1;
			ans=0;
			node_c=0;
			continue;
		}
		if(a==-1&&b==-1)
		break;
		if(a==b)
		continue;
		if(room[a][1]==0)
		{
			room[a][1]=1;
			node_c++;
		}
		if(room[b][1]==0)
		{
			room[b][1]=1;
			node_c++;
		}
		if(ifind(a)!=ifind(b))
		{
			mercy(a,b);
			ans++;
		}
		else
		{
			flag=0;
			//cout<<a<<" "<<b<<endl;
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值