我的处女作《Canvas系列教程》在我的Github上正在连载更新,希望能得到您的关注和支持,让我有更多的动力进行创作。
教程介绍、教程目录等能在README里查阅。
介绍
上一节,我们介绍了二次方贝塞尔曲线的用法。现在我们来介绍一下三次方贝塞尔曲线。
既然二次方贝塞尔曲线是向一个方向弯曲的曲线,那么三次方贝塞尔曲线则是向两个方向弯曲的曲线。
提示:三次贝塞尔曲线需要三个点。前两个点是用于三次贝塞尔计算中的控制点,第三个点是曲线的结束点。曲线的开始点是当前路径中最后一个点。如果路径不存在,那么请使用 beginPath() 和 moveTo() 方法来定义开始点。
- 开始点:moveTo(20,20)
- 控制点 1:bezierCurveTo(20,100,200,100,200,20)
- 控制点 2:bezierCurveTo(20,100,200,100,200,20)
- 结束点:bezierCurveTo(20,100,200,100,200,20)
方法 | 描述 |
---|---|
bezierCurveTo(double cpx,double cpy,double cp2x,double cp2y,double x,double y) | 创建一个代表三次方贝塞尔曲线的路径。你需要向该方法传入三个点的坐标,前两点是该曲线的控制点,最后一个是锚点。 |
绘制三次方贝塞尔曲线
上面两个图片例子是曲线开口向一个方向的,下面来实现一个开口向两个方向上的贝塞尔曲线。
贝塞尔曲线动态图片引用:https://www.cnblogs.com/hyb1/p/3875468.html