yolov3识别大分辨率图片切割问题(已解决)

本文探讨了YoloV3在处理大分辨率图像时识别效果不佳的问题,并提出通过切割图像进行训练来改善效果。详细介绍了大分辨率图片的切割方法,以优化YoloV3的图像识别性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

做图像识别的过程,发现yolov3只针对416*416的识别效果较好,而训练大分辨率的图片效果比较差,可以将图像切割训练,再进行操作,以下是大分辨率图片切割的方法

 


# -*- coding:utf-8 -*-


from PIL import Image

'''
   @author:xunalove
    修改文件位置
    修改图片id

'''
def cut(id,vx,vy):
    #打开图片图片1.jpg
    name1 = "D:/python/tire defects/source/xraytire/XrayImages/slidingwindow/"+ id + ".jpg"
   # name2 = "/Users/DSOcmy/PycharmProjects/untitled/test/"+ id +"_cut_"
    name2 = "D:/python/tire defects/source/xraytire/XrayImages/slidingwindow/" + id + "."
    im =Image.open(name1)
    w = im.size[0]
    h = im.size[1]
    print(w, h)
    #偏移量
    dx = 300
    dy = 300
    n = 1

    #左上角切割
    x1 = 0
    y1 = 0
    x2 = vx
    y2 = vy
    #纵向
    while x2 <= h:
        while y2 <= w:
            name3 = name2 + '%06d' % (n) + 
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值