莫比乌斯反演

M o ¨ b i u s M\ddot{o}bius Mo¨bius 反演

  友情提醒:本文中的证明过程大多是作者也就是我自己弄出来的,不能保证过程的严谨性,看着有道理就完了 \doge。


  看着这个叫莫比乌斯反演的东西,我们就知道,这玩意儿肯定是由莫比乌斯和反演两部分构成的 /doge。所以我们来分别看看两部分是啥意思。

一、 M o ¨ b i u s M\ddot{o}bius Mo¨bius 函数

  这个函数是一个非常优秀让人看着难受的函数。它的定义式如下:
μ ( n ) = { 1 , n = 1 ( − 1 ) k 当 n = ∏ i = 1 k p i , p i 是 互 不 相 同 的 质 数 时 0 , 当 n 质 因 数 分 解 时 分 解 出 的 质 因 子 的 次 数 大 于 一 时 \mu(n) = \begin{cases} 1,\qquad \qquad n = 1 \\ (-1)^k \qquad \quad 当 n = \prod_{i=1}^{k}p_i,p_i 是互不相同的质数时 \\ 0,\qquad \qquad 当 n 质因数分解时分解出的质因子的次数大于一时 \end{cases} μ(n)=1n=1(1)kn=i=1kpipi0n
  你别看它看起来复杂 实际上也确实很复杂,但是它有一些非常神奇的性质,就比如在莫比乌斯反演里面经常要用到的下面这个性质:
∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d \mid n}\mu(d) = [n = 1] dnμ(d)=[n=1]
  是不是看起来更复杂了 \doge 。下面我们考虑证明这个性质。首先这个东西肯定是要分成两种情况的:

  1. 第一种 n = 1 的时候,显然有 ∑ d ∣ n μ ( d ) = μ ( n ) = μ ( 1 ) = 1 \sum_{d \mid n} \mu(d) = \mu(n) = \mu(1) = 1 dnμ(d)=μ(n)=μ(1)=1
  2. 第二种 n ≠ 1 n \neq 1 n=1 的时候就有点烦人了,证明是时候要用到二项式定理(其实也可以不用,只是那样写起来就太麻烦了,我会在另一篇文章里面写到关于这部分的东西(链接会放在最下方) ),但是我们还是来看一看。
    显然我们在计算 ∑ d ∣ n μ ( d ) \sum_{d \mid n} \mu(d) dnμ(d) 的时候只需要考虑那些使得 μ ( d ) ≠ 0 \mu(d) \neq 0 μ(d)=0 的 d,所以我们假设:
    n = ∏ i = 1 k p i a i n = \prod_{i=1}^{k}p_i^{a_i} n=i=1kpiai
    μ ( d ) ≠ 0 \mu(d) \neq 0 μ(d)=0 的时候也就是说 d 的质因子的幂次都不大于一的时候,d 可以被写成这样:
    d = ∏ i = 1 t p i d = \prod_{i=1}^{t}p_i d=i=1tpi
    所以说我们可以得到拥有 t 个质因子且质因子幂次不大于一的因数的数量为 C k t C_{k}^{t} Ckt,当 t 为奇数的时候 μ ( d ) = − 1 \mu(d) = -1 μ(d)=1,当 t 为偶数的时候 μ ( d ) = 1 \mu(d) = 1 μ(d)=1,所以我们得到以下的式子:
    ∑ d ∣ n μ ( d ) = C k 0 − C k 1 + C k 2 − C k 3 + ⋯ + ( − 1 ) k C k k = ∑ i = 0 k ( − 1 ) i C k i \sum_{d \mid n}\mu(d) = C_{k}^{0} - C_{k}^{1} + C_{k}^{2} - C_{k}^{3} + \cdots + (-1)^{k}C_k^k = \sum_{i=0}^{k}(-1)^iC_k^i dnμ(d)=Ck0Ck1+Ck2Ck3++(1)kCkk=i=0k(1)iCki
    根据这个式子,接下来我们只需要证明 ∑ i = 0 k ( − 1 ) i C k i \sum_{i=0}^{k}(-1)^iC_k^i i=0k(1)iCki 等于 0 就好了。然后我们就要用到大名鼎鼎的二项式定理了,二项式定理他长这样:
    ( a + b ) n = ∑ i = 0 n C n i a n − i b i (a + b)^n = \sum_{i=0}^{n}C_n^i a^{n - i}b^i (a+b)n=i=0nCnianibi
    我们将 a = -1,b = 1 带入二项式定理,就得到了:
    ( 1 + − 1 ) n = ∑ i = 0 n C n i 1 n − i ( − 1 ) i = ∑ i = 0 n ( − 1 ) i C n i = 0 (1 + -1)^n = \sum_{i=0}^{n}C_n^i 1^{n-i} (-1)^i = \sum_{i=0}^{n}(-1)^iC_n^i = 0 (1+1)n=i=0nCni1ni(1)i=i=0n(1)iCni=0
    然后我们就证毕啦!

二、关于莫比乌斯反演

  现在我们来到了重要的部分,也就是莫比乌斯反演。我们先看结论:F(n) 和 G(n) 是定义在非负整数集上的两个函数,如果两者满足:
F ( n ) = ∑ d ∣ n G ( d ) F(n) = \sum_{d \mid n}G(d) F(n)=dnG(d)
  我们就有:
G ( n ) = ∑ d ∣ n μ ( d ) F ( n d ) G(n) = \sum_{d \mid n} \mu(d)F( \frac{n}{d} ) G(n)=dnμ(d)F(dn)
  这个神奇的玩意儿的证明肯定也非常的神奇,所以我们就来神奇的证一下它:
∑ d ∣ n μ ( d ) F ( n d ) = ∑ d ∣ n μ ( d ) ∑ i ∣ n d G ( i ) = ∑ d ∣ n ∑ i ∣ n d μ ( d ) G ( i ) = ∑ i ∣ n G ( i ) ∑ d ∣ n i μ ( d ) \begin{aligned} &\sum_{d \mid n} \mu(d)F( \frac{n}{d} ) = \sum_{d \mid n} \mu(d) \sum_{i \mid \frac{n}{d} }G(i)\\ =&\sum_{d \mid n}\sum_{i \mid \frac{n}{d} }\mu(d)G(i) = \sum_{i \mid n}G(i) \sum_{d \mid \frac{n}{i} } \mu(d) \end{aligned} =dnμ(d)F(dn)=dnμ(d)idnG(i)dnidnμ(d)G(i)=inG(i)dinμ(d)
  这两步应该比较好懂,最后一步就要用到我们在上面证明过的莫比乌斯函数的性质了,也就是 ∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d \mid n}\mu(d) = [n = 1] dnμ(d)=[n=1]。我们在每次计算 ∑ d ∣ n i μ ( d ) \sum_{d \mid \frac{n}{i}} \mu(d) dinμ(d) 的时候,只有 n i = 1 \frac{n}{i} = 1 in=1 的时候,也就是 n = i n = i n=i 时 才有值为 1,其他时候都是 0,也就是说后面那一大坨式子就退化成了 [ i = n ] [i = n] [i=n]
∑ i ∣ n G ( i ) ∑ d ∣ n d μ ( d ) = ∑ i ∣ n G ( i ) [ i = n ] = G ( n ) \sum_{i \mid n}G(i) \sum_{d \mid\frac{n}{d}} \mu(d) = \sum_{i \mid n}G(i)[i=n] = G(n) inG(i)ddnμ(d)=inG(i)[i=n]=G(n)
也就是:
∑ d ∣ n μ ( d ) F ( n d ) = G ( n ) \sum_{d \mid n} \mu(d)F(\frac{n}{d}) = G(n) dnμ(d)F(dn)=G(n)
证毕。

  我们也可以知道除了 F ( n ) = ∑ d ∣ n G ( d ) F(n) = \sum_{d \mid n}G(d) F(n)=dnG(d) 这样写, F(n) 也可以写成这样:
F ( n ) = ∑ d ∣ n G ( d ) = ∑ d ∣ n G ( n d ) F(n) = \sum_{d \mid n}G(d) = \sum_{d \mid n}G(\frac{n}{d}) F(n)=dnG(d)=dnG(dn)
  所以莫比乌斯反演也还可以写成:
G ( n ) = ∑ d ∣ n μ ( d ) F ( n d ) = ∑ d ∣ n μ ( n d ) F ( d ) G(n) = \sum_{d \mid n}\mu(d)F(\frac{n}{d}) = \sum_{d \mid n}\mu(\frac{n}{d})F(d) G(n)=dnμ(d)F(dn)=dnμ(dn)F(d)


 附在最后: (莫比乌斯反演)这个人将的超级好!:https://www.cnblogs.com/chenyang920/p/4811995.html
  然后我说我的那个另一种证明在这里:莫比乌斯函数性质的另一种(作者自己YY出来的)证明

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值