关于线性代数

线性代数

  关于这部分内容,作者也就是我是本着了解竞赛相关知识而学习的。所以文章中的理解大部分是我个人的,如有错误请大家指出。(本文为学习笔记,会不定时更新一些内容)

向量

众所周知 n 维向量是一个长这样的东西:
[ a b c ⋮ n ] \begin{bmatrix} a \\ b \\ c \\ \vdots \\ n \end{bmatrix} abcn
  而且它遵循着两种最基本的运算规则,两个向量的和和向量与标量的乘法:
[ a 1 b 1 c 1 ⋮ n 1 ] + [ a 2 b 2 c 2 ⋮ n 2 ] = [ a 1 + a 2 b 1 + b 2 c 1 + c 2 ⋮ n 1 + n 2 ] , m [ a 1 b 1 c 1 ⋮ n 1 ] = [ m a 1 m b 1 m c 1 ⋮ m n 1 ] \begin{bmatrix} a_1 \\ b_1 \\ c_1 \\ \vdots \\ n_1 \end{bmatrix} + \begin{bmatrix} a_2 \\ b_2 \\ c_2 \\ \vdots \\ n_2 \end{bmatrix} = \begin{bmatrix} a_1+a_2 \\ b_1+b_2 \\ c_1+c_2 \\ \vdots \\ n_1+n_2 \end{bmatrix},\qquad m\begin{bmatrix} a_1 \\ b_1 \\ c_1 \\ \vdots \\ n_1 \end{bmatrix} = \begin{bmatrix} ma_1 \\ mb_1 \\ mc_1 \\ \vdots \\ mn_1 \end{bmatrix} a1b1c1n1+a2b2c2n2=a1+a2b1+b2c1+c2n1+n2,ma1b1c1n1=ma1mb1mc1mn1
  为了说清楚这两种运算,我们来看看在二维坐标系中的向量们。首先想想一个从原点出发的箭头,它指向平面直角坐标系中的一个点 ( a , b ) (a, b) (a,b),这样一个箭头我们称它为向量 A ⃗ \vec{A} A ,然后同样想象一个向量 B ⃗ \vec{B} B ,它从原点出发,指向一个坐标 ( c , d ) (c,d) (c,d)。我们就可以把它们写成这样:
A ⃗ = [ a b ] , B ⃗ = [ c d ] \vec{A} = \begin{bmatrix} a \\ b \end{bmatrix}, \vec{B} = \begin{bmatrix} c \\ d \end{bmatrix} A =[ab],B =[cd]
  如果在平面直角坐标系中表示出来就是这样:
在这里插入图片描述

向量的和

  现在我们来看看如果把这两个向量相加会得到什么,根据我们上面的公式我们知道,两个向量相加,就是把各个维度上的坐标分别相加得到一个新的向量:
在这里插入图片描述
  如图,我们可以看到两个向量求和的过程就是把一个向量的"起点"平移到另一个向量的"终点"处,然后从第一个向量的"起点"做为和向量的"起点",第二个向量的"终点"作为和向量的"终点"。这个就是向量加法遵循的"平行四边形法则"。但是为什么是这样的呢?如果我们把向量想象成一种运动,这个法则就很好理解了:例如我们的 A 向量 A ⃗ \vec{A} A ,我们把它理解为一个点先向右走了 a 个单位长度,再向上走了 b 个单位长度。同理,B向量 B ⃗ \vec{B} B 就可以理解为先右走 c 个单位长度,再向上走 d 个单位长度。如果存在一个向量,使得沿着这个向量走和先沿着 A ⃗ \vec{A} A 走再沿着 B ⃗ \vec{B} B 走的效果是一样的,那么这个向量就是 A 和 B 的和向量了。显然,沿着这个向量走的时候就是先向右走 a + c 个单位长度,再想上走 b + d 个单位长度了。其实这就是在中学时学过的运动的分解。其他物理里的矢量也同样遵循相同的分解和合成规则。

向量和标量的积

  理解了向量的和,我们现在来看看一个数和一个向量的乘积。这个运算的本质就是向量在各个维度上的伸缩。想象一下, 2 × A ⃗ 2 \times \vec{A} 2×A 是不是就是把 A ⃗ \vec{A} A 拉长为原来的两倍,像这样:
在这里插入图片描述


  在前面我们说了两种向量的运算,现在我们来说一下 “基” 是什么。我们在前面的例子里把一个向量想象成了一个空间中的箭头,那我们来看一看在二维平面中 说二维是因为好理解,当然这个东西可以被拓展到其他维度 的一些特殊的"箭头"。

  1. 从原点出发,长度为 1,方向指向 x 轴正方向的向量。记为 i ^ \hat{i} i^
  2. 从原点出发,长度为 1,方向指向 y 轴正方向的向量。记为 j ^ \hat{j} j^

  从这两个向量出发,我们可以用前面说到的两个运算(向量之间的加法和标量和向量之间的乘法)来表示出整个平面上所有的向量。举个例子:比如我们要表示 A ⃗ \vec{A} A ,我们需要对 i ^ \hat{i} i^ j ^ \hat{j} j^ 做以下操作:把 i ^ \hat{i} i^ 拉长为原来的 a 倍,得到一个从原点出发,长度为 a,方向指向 x 轴正方向的向量。然后把 j ^ \hat{j} j^ 拉长为原来的 b 倍,得到一个从原点出发,长度为 b,方向指向 y 轴正方向的向量。然后我们把这两个向量相加,便得到了 A ⃗ \vec{A} A 。用公式写出来就是这样:
A ⃗ = [ a b ] = a i ^ + b j ^ \vec{A} = \begin{bmatrix} a \\ b \end{bmatrix} = a\hat{i} + b\hat{j} A =[ab]=ai^+bj^
  这个其实也是很好理解,用运动来解释就是这样: a i ^ a\hat{i} ai^ 是 一个点沿着 x 轴正方向(右边)走 a 个单位长度。 b j ^ b\hat{j} bj^ 是一个点沿着 y 轴正方向走 b 个单位长度。把他俩加起来就是一个点先沿着 x 轴正方向(右边)走 a 个单位长度,再着 y 轴正方向走 b 个单位长度。这和 A ⃗ \vec{A} A 的运动方式就完全一样了。
  同理我们也可以把 B ⃗ \vec{B} B i ^ \hat{i} i^ j ^ \hat{j} j^ 表示出来,就是这样:
B ⃗ = [ c d ] = c i ^ + d j ^ \vec{B} = \begin{bmatrix} c \\ d \end{bmatrix} = c\hat{i} + d\hat{j} B =[cd]=ci^+dj^

  这样以来,我们看一个向量的时候就可以把它想象成两个向量在经历各种伸缩之后的和,这样的两个向量我们把它们叫做这个二维平面的基。特别的我们把 i ^ \hat{i} i^ j ^ \hat{j} j^ 叫做 “正交基”。


线性组合

  这个概念理解起来也非常容易,就是说向上面那样把两个向量写成 a U ⃗ + b V ⃗ a\vec{U} + b\vec{V} aU +bV 的样子所得到的向量 W ⃗ \vec{W} W ,就是 U ⃗ \vec{U} U V ⃗ \vec{V} V 的线性组合。
  再重复一遍 不知道为什么就是想多写一遍qwq,可能是因为这部分太短了吧 想这样的一个向量 W ⃗ \vec{W} W ,写成一下的这种形式:
W ⃗ = a U ⃗ + b V ⃗ \vec{W} = a\vec{U} + b\vec{V} W =aU +bV
  就称 W ⃗ \vec{W} W U ⃗ \vec{U} U V ⃗ \vec{V} V 的线性组合。


张成的空间

  对于一个向量 W ⃗ \vec{W} W 是一个 U ⃗ \vec{U} U V ⃗ \vec{V} V 的线性组合,我们取所有的 W ⃗ \vec{W} W ,组成一个集合,我们把这个集合就称为 U ⃗ \vec{U} U V ⃗ \vec{V} V 张成的空间。
  比如 U ⃗ , V ⃗ \vec{U},\vec{V} U V 是两个不共线的向量,那么这个张成空间就可以用来表示 U ⃗ \vec{U} U V ⃗ \vec{V} V 所在的二维平面。而如果对于三个向量张成的空间来说,如果他们不共面,张成的就是一个三维空间,如果共面的话张成的就是一个二维空间,而如果三个向量共线的话,张成的就只是一根线了。


线性变换

  首先我们要知道 “变换” 这个词在数学中的含义和 “函数” 其实是差不多的。他们同样都是给定一些输入然后给出一些输出的方式。而在线性代数中,我们一般说一个变换是输入一个向量然后输出一个向量的方法。而我们所说的线性变换表示的就是一种特殊的变换方法。
  从上文我们知道在线性代数中我们输入一个向量会得到一个输出的向量(我们前文说可以把向量想象成空间中的一个个箭头,而现在我们要想象的是空间中的很多个箭头,这样表述起来就很不方便,所以我们现在规定所有向量的起点都为坐标原点,这样就可以把一个个向量想象成空间中的一个个点),就是说对于空间中的某个我们经过这个变换之后会得到另一个点。
  而线性变换来说,它会符合以下两个条件:

  1. 所有的直线在变换后不能被掰弯
  2. 坐标原点要停留在原位

  这也就是说在这样的变换中,我们只需要关注 i ^ \hat{i} i^ j ^ \hat{j} j^ 的变化 当然,仅仅对于二维来说,就能知道在整个二维平边上的所有向量的变化。为什么这么说呢,我们来举个例子。
  我们可以用坐标的方式表示二维平边的正交基,像这样:
i ^ = [ 1 0 ] , j ^ = [ 0 1 ] \hat{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix},\hat{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} i^=[10]j^=[01]
  然后对于一个线性变换来说,它会对整个平面进行旋转伸缩,然后改变我们的两个正交基。经过线性变换的两个正交基在彼此的眼中位置关系始终保持不变,但是在我们看来(原空间的视角)这两个正交基可能已经变成了下面这样:
在这里插入图片描述
  假设我们有一个原来的向量 A ⃗ = [ 2 1 ] \vec{A} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} A =[21],他可以表示成: A ⃗ = 2 i ^ + j ^ \vec{A} = 2\hat{i} + \hat{j} A =2i^+j^,而经过变换后,它就变成了 A ′ ⃗ \vec{A'} A ,这个经过变换的向量仍然可以写成: [ 2 1 ] \begin{bmatrix} 2 \\ 1 \end{bmatrix} [21],只不过它的正交基已经变成了 i ′ ^ \hat{i'} i^ j ′ ^ \hat{j'} j^,于是他就可以写成 A ′ ⃗ = 2 i ′ ^ + j ′ ^ \vec{A'} = 2\hat{i'} + \hat{j'} A =2i^+j^,用图像表示就是下面这样:
在这里插入图片描述
  而对于一个任意的向量 V ⃗ = [ a b ] = a i ^ + b j ^ \vec{V} = \begin{bmatrix} a \\ b \end{bmatrix} = a\hat{i} + b\hat{j} V =[ab]=ai^+bj^ 来说,经过一个线性变换之后它的坐标任然能写成 [ a b ] \begin{bmatrix} a \\ b \end{bmatrix} [ab],只不过它的正交基已经变成了 i ′ ^ \hat{i'} i^ j ′ ^ \hat{j'} j^,所以变换之后的 V ′ ⃗ \vec{V'} V 就等于 a i ′ ^ + b j ′ ^ a\hat{i'} + b\hat{j'} ai^+bj^。而在这种变换中,这个二维平面只会被旋转伸缩,而不会出现直线变成曲线的情况,而且在这种变换中,坐标原点保持不变。所以在线性变换中,我们只需要考虑有关正交基经过变换之后的坐标,我们就能知道这对正交基张成的空间中的所有的向量在这个变换之后的坐标。


矩阵和它的几种运算

矩阵与向量的乘法

  我们再来看看我在上面加粗的这句话:在线性变换中,我们只需要考虑有关正交基经过变换之后的坐标,我们就能知道这对正交基张成的空间中的所有的向量在这个变换之后的坐标。 这句话虽然读着拗口,但是它是我们理解矩阵的关键。
  举个例子,还是在二维空间中,我们最多只需要 4 个量来描述一个线性变换,这四个量分别就是变换后 i ′ ^ \hat{i'} i^ 的横纵坐标和变换后 j ′ ^ \hat{j'} j^ 的横纵坐标。那么既然我们知道一个变换会像一个函数一样给定一些输入并返回一个输出。那么我们能不能定义一个运算来表示这种变换呢(就像函数 f(x) = expression 一样)。
  在这里我么定义一个矩阵来表示一个线性变换,具体的方法是这样的:

  1. 我们把变换后的 i ′ ^ \hat{i'} i^ 的坐标竖着抄在矩阵的第一列
  2. 我们把变换后的 j ′ ^ \hat{j'} j^ 的坐标竖着抄在矩阵的第二列

  然后我们就得到了这样一个矩阵来表示一个线性变换(假设变换后 i ′ ^ = [ a b ] \hat{i'} = \begin{bmatrix} a \\ b \end{bmatrix} i^=[ab] j ′ ^ = [ c d ] \hat{j'} = \begin{bmatrix} c \\ d \end{bmatrix} j^=[cd]
M = [ a c b d ] M = \begin{bmatrix} a && c \\ b && d \end{bmatrix} M=[abcd]

  而这个矩阵作用在一个向量 x ⃗ = [ x 1 x 2 ] \vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} x =[x1x2] 上(也就是一个向量进行一个线性变换)时,就可以被写成这样:
M x ⃗ = [ a c b d ] [ x 1 x 2 ] M\vec{x} = \begin{bmatrix} a && c \\ b && d \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} Mx =[abcd][x1x2]

  而又根据我们在上文讲到过的经过变换得到的新的向量 x ′ ⃗ = x 1 i ′ ^ + x 2 j ′ ^ \vec{x'} = x_1\hat{i'} + x_2\hat{j'} x =x1i^+x2j^,且 i ′ ^ = [ a b ] \hat{i'} = \begin{bmatrix} a \\ b \end{bmatrix} i^=[ab] j ′ ^ = [ c d ] \hat{j'} = \begin{bmatrix} c \\ d \end{bmatrix} j^=[cd]。我们就可以得到一个矩阵与一个向量的乘法的运算法则:
M x ⃗ = [ a c b d ] [ x 1 x 2 ] = x 1 i ′ ^ + x 2 j ′ ^ = x 1 [ a b ] + x 2 [ c d ] = [ a x 1 b x 1 ] + [ c x 2 d x 2 ] = [ a x 1 + c x 2 b x 1 + d x 2 ] M\vec{x} = \begin{bmatrix} a && c \\ b && d \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1\hat{i'} + x_2\hat{j'} = x_1 \begin{bmatrix} a \\ b \end{bmatrix} + x_2\begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} ax_1 \\ bx_1 \end{bmatrix} + \begin{bmatrix} cx_2 \\ dx_2 \end{bmatrix} = \begin{bmatrix} ax_1+cx_2 \\ bx_1 + dx_2 \end{bmatrix} Mx =[abcd][x1x2]=x1i^+x2j^=x1[ab]+x2[cd]=[ax1bx1]+[cx2dx2]=[ax1+cx2bx1+dx2]

几个基本的线性变换

  我们在上文讲到线性变换的时候,我们提到了两个词 “旋转” 和 “各个维度上的伸缩”,这里我们就来讨论一下如何用矩阵来完成这两个工作。

旋转

  我们先来看一个特殊的旋转:把一个向量向左旋转 90 度。如我们前面所说,在一个线性变换中,我们只需要关心两个正交基 i ^ \hat{i} i^ j ^ \hat{j} j^ 分别怎么变化,我们就能得到平面内所有向量的变化。所以我们来看:在向左旋转 90 度的过程中, i ^ \hat{i} i^ [ 1 0 ] \begin{bmatrix} 1 \\ 0 \end{bmatrix} [10] 变成了 [ 0 1 ] \begin{bmatrix} 0 \\ 1 \end{bmatrix} [01] j ^ \hat{j} j^ [ 0 1 ] \begin{bmatrix} 0 \\ 1 \end{bmatrix} [01] 变为 [ − 1 0 ] \begin{bmatrix} -1 \\ 0 \end{bmatrix} [10]。所以左旋 90 度的矩阵就应该是这样:
[ 0 − 1 1 0 ] \begin{bmatrix} 0 && -1 \\ 1 && 0 \end{bmatrix} [0110]
  我们来验算一下这个式子,我们现在有一个向量 A ⃗ = [ 1 2 ] \vec{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} A =[12],我们很容易手算出它向左旋转 90 度之后的向量 A ′ ⃗ = [ − 2 1 ] \vec{A'} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} A =[21]。而如果我们把之前我们推出来的旋转矩阵作用在这个向量上我们就得到了:
[ 0 − 1 1 0 ] [ 1 2 ] = [ 0 1 ] + 2 [ − 1 0 ] = [ − 2 1 ] \begin{bmatrix} 0 && -1 \\ 1 && 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix}-2 \\ 1\end{bmatrix} [0110][12]=[01]+2[10]=[21]
  是同样的结果。图解如下:
在这里插入图片描述
  同理,我们也可以推出右旋 90 度的矩阵:
[ 0 1 − 1 0 ] \begin{bmatrix} 0 && 1 \\ -1 && 0 \end{bmatrix} [0110]
  感兴趣的可以自己推一下。
  接下来我们来看一看更一般的旋转,比如将一个向量逆时针旋转一个角度 α \alpha α(如下图)。
在这里插入图片描述

  我们和上面的思路一样,找出 i ^ \hat{i} i^ j ^ \hat{j} j^ 经过变换之后的坐标。,根据我们在小学二年级就学习过的三角函数知识,我们可以轻易的推导到:
i ′ ^ = [ c o s α s i n α ] , j ′ ^ = [ c o s ( α + π 2 ) s i n ( α + π 2 ) ] = [ − s i n α c o s α ] \hat{i'} = \begin{bmatrix} cos\alpha \\ sin\alpha \end{bmatrix},\hat{j'} = \begin{bmatrix} cos(\alpha + \frac{\pi}{2}) \\ sin(\alpha + \frac{\pi}{2}) \end{bmatrix} = \begin{bmatrix} -sin\alpha \\ cos\alpha \end{bmatrix} i^=[cosαsinα]j^=[cos(α+2π)sin(α+2π)]=[sinαcosα]
  所以我们得到了逆时针旋转任意角度 α \alpha α 的旋转矩阵:
[ c o s α − s i n α s i n α c o s α ] \begin{bmatrix} cos\alpha && -sin\alpha \\ sin\alpha && cos\alpha \end{bmatrix} [cosαsinαsinαcosα]
  旋转后的向量就变成了:
[ x ′ y ′ ] = [ c o s α − s i n α s i n α c o s α ] [ x y ] \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} cos\alpha && -sin\alpha \\ sin\alpha && cos\alpha \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} [xy]=[cosαsinαsinαcosα][xy]

伸缩

  在这里我们只讨论一下一种最简单的伸缩: i ^ \hat{i} i^ 不变, j ^ \hat{j} j^ 被向右拉伸到了 (1, 1)。我们得到的拉伸矩阵就是这个:
[ 1 1 0 1 ] \begin{bmatrix} 1 && 1 \\ 0 &&1 \end{bmatrix} [1011]
 图解:
在这里插入图片描述

矩阵与矩阵之间的乘法

  在前面我们说了,一个矩阵就相当于一个线性变换(类比成一个函数)。而一个矩阵乘上一个向量就表示把这个线性变换作用在这个向量上,等到一个新的向量。而如果我们要施加两种不同的变换到一个向量上,比如我们让这个向量先逆时针旋转 90 度,再沿着一个方向拉伸一下,我们如何找到这个变换所对应的的矩阵呢。
  我们说过,我们可以吧一个变换当做一个函数,那么如果我们需要用两个函数先后作用在同一个数字上,那就会产生一个新的函数,这个函数写出来就是这样(我们设前两个函数分别为 f ( x ) f(x) f(x) g ( x ) g(x) g(x)): h ( x ) = f ( g ( x ) ) h(x) = f(g(x)) h(x)=f(g(x))。在此时这 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 两个函数先后作用在 x 身上的效果就和 h ( x ) h(x) h(x) 作用在 x 身上的效果是完全一样的了。
  那么同样的,我们如果需要先给一个向量施加一个变换,这个变幻用矩阵 M 1 M_1 M1 表示,在给变换后的向量施加一个变换,这个变幻用矩阵 M 2 M_2 M2 表示。那么是不是可以找到一个矩阵 M M M 使得 M 1 M_1 M1 M 2 M_2 M2 先后作用在这个向量上的结果和单独一个 M M M 作用在这个向量上的结果相同。那么我们就称这个矩阵为那两个矩阵的积。
M 2 M 1 x ⃗ = M x ⃗ → M 2 M 1 = M M_2M_1\vec{x} = M\vec{x} \rightarrow M_2M_1 = M M2M1x =Mx M2M1=M
  值得注意的是,这里的 M 2 M 1 x ⃗ M_2M_1\vec{x} M2M1x 是现将 M 1 M_1 M1 作用在 x ⃗ \vec{x} x 上,再将 M 2 M_2 M2 作用在变换后的 x ⃗ \vec{x} x 上。是从右往左来看的。
  下面就是我们的运算法则的问题了:我们先看看如果按变换的顺序分别运算会得到怎样的结果(设 x ⃗ = [ x 1 x 2 ] \vec{x} = \begin{bmatrix}x_1\\x_2\end{bmatrix} x =[x1x2], M 1 = [ a c b d ] M_1=\begin{bmatrix} a & c \\ b & d \end{bmatrix} M1=[abcd], M 2 = [ e g f h ] M_2 = \begin{bmatrix}e & g \\ f & h\end{bmatrix} M2=[efgh]):

M 2 M 1 x ⃗ = [ e g f h ] [ a c b d ] [ x 1 x 2 ] = [ e g f h ] [ a x 1 + c x 2 b x 1 + d x 2 ] = [ e ( a x 1 + c x 2 ) + g ( b x 1 + d x 2 ) f ( a x 1 + c x 2 ) + h ( b x 1 + d x 2 ) ] = [ ( a e + b g ) x 1 + ( c e + d g ) x 2 ( a f + b h ) x 1 + ( c f + d h ) x 2 ] \begin{aligned} M_2M_1\vec{x} = &\begin{bmatrix}e & g \\ f & h\end{bmatrix}\begin{bmatrix} a & c \\ b & d \end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix} = \begin{bmatrix}e & g \\ f & h\end{bmatrix}\begin{bmatrix}ax_1 + cx_2 \\ bx_1 + dx_2\end{bmatrix} \\ = &\begin{bmatrix}e(ax_1 + cx_2) + g(bx_1 + dx_2) \\ f(ax_1 + cx_2) + h(bx_1 + dx_2) \end{bmatrix} = \begin{bmatrix}(ae+bg)x_1 + (ce+dg)x_2 \\ (af+bh)x_1 + (cf+dh)x_2 \end{bmatrix} \end{aligned} M2M1x ==[efgh][abcd][x1x2]=[efgh][ax1+cx2bx1+dx2][e(ax1+cx2)+g(bx1+dx2)f(ax1+cx2)+h(bx1+dx2)]=[(ae+bg)x1+(ce+dg)x2(af+bh)x1+(cf+dh)x2]
  所以我们得到矩阵 M M M 应该长这样:
M = [ e g f h ] [ a c b d ] = [ a e + b g c e + d g a f + b h c f + d h ] M = \begin{bmatrix}e & g \\ f & h\end{bmatrix}\begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} ae+bg & ce+dg \\ af+bh & cf+dh \end{bmatrix} M=[efgh][abcd]=[ae+bgaf+bhce+dgcf+dh]
  用这种方法我们虽然把矩阵乘法(仅二维形式)的运算公式给推到出来了,但是这种方法需要大量的运算和配凑的方法,我们认为它不够富有数学之美qwq。所以这里我给出另外一个推导公式的方法,就是关注两个正交基。
 还是这句话,在线性变换中,我们只需要考虑有关正交基经过变换之后的坐标,我们就能知道这对正交基张成的空间中的所有的向量在这个变换之后的坐标。 所以我们现在考虑在两个变换叠加之后,两个正交基的坐标会怎样变换。
  在第一个矩阵作用在正交基上之后,两个正交基肯定就变成了 i ′ ^ = [ a b ] \hat{i'} = \begin{bmatrix} a \\ b \end{bmatrix} i^=[ab] j ′ ^ = [ c d ] \hat{j'} = \begin{bmatrix} c \\ d \end{bmatrix} j^=[cd](前面讲的矩阵乘向量的定义就这样来的)。然后我们再把第二个矩阵 [ e g f h ] \begin{bmatrix} e & g \\ f & h \end{bmatrix} [efgh] 作用在在这两个变换之后的正交基上,那么这两个正交基就会变成:
i ′ ′ ^ = [ e g f h ] i ′ ^ = [ e g f h ] [ a b ] = [ a e + b g a f + b h ] , j ′ ′ ^ = [ e g f h ] j ′ ^ = [ e g f h ] [ c d ] = [ c e + d g c f + d h ] \hat{i''} = \begin{bmatrix} e & g \\ f & h \end{bmatrix}\hat{i'} = \begin{bmatrix} e & g \\ f & h \end{bmatrix}\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ae+bg \\ af+bh \end{bmatrix},\hat{j''} = \begin{bmatrix} e & g \\ f & h \end{bmatrix}\hat{j'} = \begin{bmatrix} e & g \\ f & h \end{bmatrix}\begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} ce+dg \\ cf+dh \end{bmatrix} i^=[efgh]i^=[efgh][ab]=[ae+bgaf+bh]j^=[efgh]j^=[efgh][cd]=[ce+dgcf+dh]
  然后把两个正交基分别抄下来,得到矩阵 M M M
M = [ a e + d g c e + d g a f + b h c f + d h ] M = \begin{bmatrix} ae+dg & ce+dg \\ af+bh & cf+dh \end{bmatrix} M=[ae+dgaf+bhce+dgcf+dh]
  这就和我们上面凑出来的公式是完全一样的了。

矩阵乘法的运算律

  从上文我们可以看出矩阵乘法肯定是符合结合律的(这应该不用解释了吧)。但是它是不符合交换律的。也就是说 M 2 M 1 ≠ M 1 M 2 M_2M_1 \neq M_1M_2 M2M1=M1M2。就好像我们把一个向量先旋转在拉伸,和先拉伸再旋转所得到的的新的向量是不同的。我们也可以把矩阵理解成函数,那么 f ( g ( x ) ) f(g(x)) f(g(x)) 显然不等于 g ( f ( x ) ) g(f(x)) g(f(x))


行列式

  在前面,我们说了一些关于线性变换的知识,我们也知道了如何用矩阵来表示一个线性变换。虽然我们只说了二维的情况,但是线性代数肯定不止二维的变换,读者可以自己通过思考把上面的内容试着推广到三维 甚至四维、五维…
  现在我们来看看下面这个变换(其实就是一个矩阵):
[ 5 0 0 3 ] \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} [5003]
  根据我们前面的学习,我们知道在这个变换里我们将 i ^ \hat{i} i^ 变成了 [ 5 0 ] \begin{bmatrix} 5 \\ 0 \end{bmatrix} [50],并且把 j ^ \hat{j} j^ 变成了 [ 0 3 ] \begin{bmatrix} 0 \\ 3 \end{bmatrix} [03]。如下图:
在这里插入图片描述
  我们看到,在这个变换里,我们的 “单位小方格”(应该都知道我在说啥吧)的面积从 1 变成了 15。而且我们可以用微元法推出在这个平面上的所有图形的面积在变换前和变换后的面积比都是 1 : 15 1 : 15 1:15。而在不同的线性变换中,平面上的一块图形的面积的变化率都是不同的(在三维的矩阵中就是单位小立方体体积的变化率,在四维矩阵中就是单位小超立方体的我也不知道叫啥积的变化率懂得都懂qwq)。所以我们需要一个运算来帮助我们得到这些面积,体积,我也不知道叫啥积等等的变化率。这种运算就是行列式。
  根据这个定义,我们在上面记得例子中的矩阵的行列式就是:
∣ 5 0 0 3 ∣ = d e t ( [ 5 0 0 3 ] ) = 15 \begin{vmatrix} 5 & 0 \\ 0 & 3 \end{vmatrix} = det\Bigg(\begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}\Bigg) = 15 5003=det([5003])=15
  二维中的矩阵的行列式的公式我们也很容易推导出来:
∣ a c b d ∣ = a d − b c \begin{vmatrix} a & c \\ b & d \end{vmatrix} = ad - bc abcd=adbc
  图解如下:
在这里插入图片描述


矩阵与线性方程组

线性方程组

  线性方程自是指像这样的式子:
{ 1 x 1 + 3 x 2 + 5 x 3 = − 3 7 x 1 + 0 x 2 + 6 x 3 = 0 2 x 1 + 3 x 2 + 1 x 3 = 7 \begin{cases} 1x_1 + 3x_2 + 5x_3 = -3 \\ 7x_1 + 0x_2 + 6x_3 = 0 \\ 2x_1 + 3x_2 + 1x_3 = 7 \end{cases} 1x1+3x2+5x3=37x1+0x2+6x3=02x1+3x2+1x3=7
  在这些式子中,我们不允许未知数的高次项、三角函数、指数、对数、这些论七八糟的非线性的式子出现,我们只有一次项。我们就把长成这样的方程组叫做线性方程组。

线性方程组与矩阵乘法

  根据我们上面对线性方程组的描述,我们可以知道,前面的线性方程组可以写成矩阵乘法的形式:
{ 1 x 1 + 3 x 2 + 5 x 3 = − 3 7 x 1 + 0 x 2 + 6 x 3 = 0 2 x 1 + 3 x 2 + 1 x 3 = 7 → [ 1 3 5 7 0 6 2 3 1 ] [ x 1 x 2 x 3 ] = [ − 3 0 7 ] \begin{cases} 1x_1 + 3x_2 + 5x_3 = -3 \\ 7x_1 + 0x_2 + 6x_3 = 0 \\ 2x_1 + 3x_2 + 1x_3 = 7 \end{cases} \rightarrow \begin{bmatrix} 1 & 3 & 5 \\ 7 & 0 & 6 \\ 2 & 3 & 1 \end{bmatrix}\begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix} = \begin{bmatrix}-3\\0\\7\end{bmatrix} 1x1+3x2+5x3=37x1+0x2+6x3=02x1+3x2+1x3=7172303561x1x2x3=307
  后者(矩阵形式)用我们在上文提到的矩阵和向量的积的运算公式展开就能在数值上得到前者(方程组形式)。而我们从后者又能找到一个对于解方程的新的解释:我们现在已知一个线性变换,而且已知一个向量经过这个变换之后所得到的新的向量,让我们反过来求解没有变换时的向量是长啥样的。而通过这种几何上的理解,我们可以来判断这个方程组是否有解,和我们该如何求解这个方程组。
  我们就以上面的方程组为例,在一个三维的空间中有一个向量 x ⃗ = [ x 1 x 2 x 3 ] \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} x =x1x2x3。我们给他一个变幻矩阵 A = [ 1 3 5 7 0 6 2 3 1 ] A = \begin{bmatrix} 1 & 3 & 5 \\ 7 & 0 & 6 \\ 2 & 3 & 1 \end{bmatrix} A=172303561。这个矩阵作用在 x ⃗ \vec{x} x 上之后会得到一个新的向量 b ⃗ = [ − 3 0 7 ] \vec{b} = \begin{bmatrix}-3\\0\\7\end{bmatrix} b =307,也就是说向量 x ⃗ \vec{x} x 在经历了一次线性变换之后变成了 b ⃗ \vec{b} b ,现在我们要在三维空间中找到这个向量 x ⃗ \vec{x} x 。这个过程也就是求解 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3 的过程。

矩阵的秩

  我们在上面说了,通过几何上对求解线性方程组的理解,我们可以来判断这个方程组是否有解,和我们该如何求解这个方程组。现在我们就来说说如何判断这个方程组是否有解。
  我们来看看这一种特殊的情况,对于一个方程 A x ⃗ = b ⃗ A\vec{x} = \vec{b} Ax =b 来说,如果矩阵 A 的行列式为 0,即 ∣ A ∣ = 0 \begin{vmatrix} A \end{vmatrix} = 0 A=0,这样的变换中会发生什么呢。
  我们知道行列式在二维(三维)中表示的是由两个(三个)正交基构成的平行四边形(平行六面体)的面积(体积)。而现在这个平行四边形(平行六面体)的面积(体积)变成了 0。我们就能从此推出,现在的两个(三个)正交基一定是共线(共面或共线)的。因为一条线(一个平面或一条线)的面积(体积)为 0 嘛。
  像这样的,如果矩阵的行列式等于 0,那么我们称这个矩阵是欠秩的。而行列式不为 0 的情况就成这个矩阵是满秩的。一个矩阵的秩被定义为经过这个矩阵转换过后还剩的维度的个数,当然,这是一种通俗的说法。严谨的说是这个矩阵每一列所代表的的向量中线性无关的向量个数的极大值,但是这种说法比较难懂,所以我就采用了前面的说法。
  举个例子,比如说这个矩阵: [ 1 2 3 6 ] \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} [1326],它的行列式等于: ∣ 1 2 3 6 ∣ = 2 × 3 − 1 × 6 = 0 \begin{vmatrix} 1 & 2 \\ 3 & 6 \end{vmatrix} = 2\times 3 - 1 \times 6 = 0 1326=2×31×6=0,这说明了用这个矩阵进行变换之后, i ^ \hat{i} i^ j ^ \hat{j} j^ 共线了。留下的维数就是 1。所以这个矩阵的秩也是 1。再比如一个三维矩阵,如果它的三列表示的三个向量共面,它的秩就是 2。如果它的三列表示的三个向量共线那它的秩就是 1。
  由此,一个矩阵为满秩的时候关于它的 A x ⃗ = b ⃗ A\vec{x} = \vec{b} Ax =b 一定有解。而如果它不是满秩的话,这个方程就不一定有解了。

逆矩阵

定义

  既然我们知道一个变换 A 可以将 x ⃗ \vec{x} x 转化为 b ⃗ \vec{b} b (简记为 A x ⃗ = b ⃗ A\vec{x} = \vec{b} Ax =b )。那么我们就应该想到,有另一种线性变换能把 b ⃗ \vec{b} b 转化成 x ⃗ \vec{x} x ,很显然这个未知的矩阵和前面那个矩阵 A 互为对方的逆。也就是说一个矩阵 A 作用在一个向量 x ⃗ \vec{x} x 之后,再让矩阵 A 的逆作用在矩阵 A 作用后的向量上,我们就得到了原来的向量(我们把 A 的逆记做 A − 1 A^{-1} A1):
A − 1 A x ⃗ = x ⃗ A^{-1}A\vec{x} = \vec{x} A1Ax =x
  由此再加上矩阵乘法的结合律,我们可以很容易的得到(I 为单位矩阵):
A − 1 A = A A − 1 = I , 其 中 I = [ 1 0 0 ⋯ 0 0 1 0 ⋯ 0 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ 1 ] A^{-1}A = AA^{-1} = I,其中 I = \begin{bmatrix}1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} A1A=AA1=II=1000010000100001
  我们的 I I I 是单位矩阵,他长的样子非常好记,从左上到右下这一个对角线全是 1,其余地方全是 0。这个矩阵他有一个非常神奇的性质,那就是任何矩阵和他相乘得到的都是原矩阵( I A = A I = A IA = AI = A IA=AI=A)。其实这个矩阵就是将 n 维空间中的 n 个正交基直接写到一个矩阵里面,所有正交基都没动,自然经过这变换之后向量的坐标也不会改变。我们也可以知道,这个矩阵的逆就是他自己 I − 1 = I I^{-1} = I I1=I
 我们现在知道了什么是一个矩阵的逆,那回到上面的 A x ⃗ = b ⃗ A\vec{x} = \vec{b} Ax =b ,我们现在只需要求出矩阵 A 的逆 A − 1 A^{-1} A1 就可以直接让 b ⃗ \vec{b} b 乘上 A − 1 A^{-1} A1 就得到了我们想要的 x ⃗ \vec{x} x 。即 x ⃗ = A − 1 b ⃗ \vec{x} = A^{-1}\vec{b} x =A1b

关于增广矩阵

  为什么要在这里写这个东西呢,因为下面将求解一个矩阵的逆的时候需要用到。一个增广矩阵可以被简单的理解成两个矩阵 “拼凑” 在一起,比如一个非常简单的例子:
A = [ a c b d ] , B = [ e g f h ] A = \begin{bmatrix} a & c \\ b & d \end{bmatrix},B = \begin{bmatrix} e & g \\ f & h \end{bmatrix} A=[abcd]B=[efgh]
  他俩的增广矩阵记为 ( A ∣ B ) (A \mid B) (AB),写成这样:
( A ∣ B ) = [ a c e g b d f h ] (A \mid B) = \left[ \begin{array}{cc|cc} a & c & e & g \\ b & d & f & h \end{array} \right] (AB)=[abcdefgh]
  是不是很简单,就是把两个简单的 “拼在一起”。然后中间再加一个竖线就成了他们俩的增广矩阵。

求解

  在看这部分之前,你需要了解一些关于初等行变换和高斯消元的知识,如果没有了解的话,我会在将来出写一篇关于 高斯消元和初等行变换 的文章。请大家自行阅读。

众所周知有很多种方法都可以用来求解一个矩阵的逆,这里我们主要讲解利用增广矩阵加高斯消元求逆的方法,我们首先来看看这个是具体的实现方法是什么。

  1. 首先写出要求逆的原矩阵 A 和 单位矩阵 I 的增广矩阵 ( A ∣ I ) (A \mid I) (AI)
  2. 经过高斯消元,也就是初等行变换,把整个矩阵消成了这样的形式: ( I ∣ B ) (I \mid B) (IB)
  3. 此时的 B 就是 A 的逆矩阵,即 B = A − 1 B = A^{-1} B=A1

  但是为什么是这样呢?我们知道开始消元时的矩阵应该是这样的: ( A ∣ I ) (A\mid I) (AI),我们在这个矩阵的左边乘上 A 的逆:
A − 1 ( A ∣ I ) = ( A A − 1 ∣ A − 1 I ) = ( I ∣ A − 1 ) A^{-1}(A\mid I) = (AA^{-1}\mid A^{-1}I) = (I\mid A^{-1}) A1(AI)=(AA1A1I)=(IA1)
  所以我们知道,存在一种线性变换,使得我们能将 A 与 I 的增广矩阵变成 I 与 A − 1 A^{-1} A1 的增广矩阵。而初等行变换的本质就是一种线性变换(因为它可以想写成矩阵乘法的形式),所以我们通过初等行变换把 A 消成 I 之后,剩下的部分自然就是 A − 1 A^{-1} A1 了。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值