学习笔记--数论函数

数论函数

  定义在整数域上的实值或复值函数叫做数论函数

积性函数

  一个数论函数如果满足 g c d ( p , q ) = 1 gcd(p, q) = 1 gcd(p,q)=1(也就是 p, q 互质)的时候有 f ( p q ) = f ( p ) f ( q ) f(pq) = f(p)f(q) f(pq)=f(p)f(q),那么这个函数叫做积性函数。

  几个是积性函数的例子:
I ( n ) = 1 不 变 的 函 数 i d ( n ) = n 单 位 函 数 I k ( n ) = n k 幂 函 数 ε ( n ) = [ n = 1 ] = { 1 ( n = 1 ) 0 o t h e r w i s e 原 函 数 \begin{aligned} & I(n) = 1 \qquad \qquad 不变的函数 \\ & id(n) = n \qquad \qquad 单位函数 \\ & I_k(n) =n^k \qquad \qquad 幂函数 \\ & \varepsilon(n) = [n = 1] = \begin{cases} 1 \quad (n = 1) \\ 0 \quad otherwise \end{cases} \qquad 原函数 \end{aligned} I(n)=1id(n)=nIk(n)=nkε(n)=[n=1]={1(n=1)0otherwise

除数函数

  这是几个很显然是积性函数的例子,还有一些数论函数是积性的就不是那么显然了。比如这个:

σ k ( n ) = ∑ d ∣ n d k \sigma_k(n) = \sum_{d \mid n}d^k σk(n)=dndk

  我们现在来证明一下这个函数是积性函数:我们首先考虑把这个 n 分解质因数: n = ∏ i = 1 r p i α i n = \prod\limits_{i=1}^r p_i^{\alpha_i} n=i=1rpiαi,然后我们再考虑将每个 n 的因数分解质因数: d = ∏ i = 1 r p i β i d = \prod\limits_{i=1}^r p_i^{\beta_i} d=i=1rpiβi,很显然 β ∈ [ 0 , α ] \beta \in [0, \alpha] β[0,α]。要不然 d 就不是 n 的因数了。

  观察上面的函数表达式我们可以知道,每个质数对函数值的贡献是独立的,并且它们的贡献是用乘积来表达。我们在上面又知道每一个 β i ∈ [ 0 , α i ] \beta_i \in [0, \alpha_i] βi[0,αi] 所以 β i \beta_i βi 可能的取值就有 α i + 1 \alpha_i + 1 αi+1 个。那么所有 β \beta β 贡献的乘积就是:

( α 1 + 1 ) ( α 2 + 1 ) ⋯ ( α r + 1 ) = ∏ i = 1 r ( α i + 1 ) (\alpha_1 + 1)(\alpha_2 + 1)\cdots(\alpha_r + 1) = \prod_{i = 1}^r (\alpha_i + 1) (α1+1)(α2+1)(αr+1)=i=1r(αi+1)

  大家可以发现这个式子其实就等于 σ 0 ( n ) \sigma_0(n) σ0(n) 也就是所有因数的个数。很显然我们就证出了, σ 0 ( n ) \sigma_0(n) σ0(n) 是积性的(因为所有质因子贡献独立且是乘积形式)。而对于其他的 k 来说道理也是一样的,只不过对于每一项的 ( α i + 1 ) (\alpha_i + 1) (αi+1) 应该写成另一种形式。比如对于 σ 1 ( n ) \sigma_1(n) σ1(n) 来说,他计算的是 n 的所有因数的和(因为 σ 1 ( n ) = ∑ d ∣ n d 1 = ∑ d ∣ n d \sigma_1(n) = \sum\limits_{d\mid n}d^1 = \sum\limits_{d\mid n}d σ1(n)=dnd1=dnd)。又因为我们上面的推导,我们知道一个质因子的贡献就是 ∑ i = 0 α i p k i \sum\limits_{i=0}^{\alpha_i}p_k^i i=0αipki(应该很好理解吧 qwq)。然后我们把所有的这玩意儿乘起来就得到了 σ 1 ( n ) \sigma_1(n) σ1(n)

σ 1 ( n ) = ∏ i = 1 r ∑ j = 0 α i p i j \sigma_1(n) = \prod_{i=1}^r \sum_{j=0}^{\alpha_i}p_i^j σ1(n)=i=1rj=0αipij

  显然这玩意儿也是积性的了。而对于更大的 k k k 来说,我们也可以写成这样:

σ k ( n ) = ∏ i = 1 r ∑ j = 0 α i ( p i j ) k = ∏ i = 1 r ∑ j = 0 α i p i j k \sigma_k(n) = \prod_{i=1}^r \sum_{j = 0}^{\alpha_i}\left(p_i^j\right)^k = \prod_{i=1}^r \sum_{j = 0}^{\alpha_i}p_i^{jk} σk(n)=i=1rj=0αi(pij)k=i=1rj=0αipijk

这个东西应该也很显然吧(逃) 所以 σ k ( n ) \sigma_k(n) σk(n) 都是积性函数。

欧拉函数

  还有一个积性函数的例子就是欧拉函数了。它的定义式长这样:

φ ( n ) = ∑ i = 1 n [ g c d ( i , n ) = 1 ] \varphi(n) = \sum_{i=1}^{n}[gcd(i, n) = 1] φ(n)=i=1n[gcd(i,n)=1]

  它表达的意思就是小于等于 n 的数中与 n 互质的数的个数,这玩意儿也是一个积性函数,神不神奇qwq。因为在我的另一篇文章里面也写了一些关于这个函数的一些性质,这里我就直接把那边的内容搬过来吗,然后再添加一些其它的东西。

  现在我们来证明欧拉函数是一个积性函数,首先我们看这样一个引理:

在算术基本定理中 n = p 1 c 1 × p 2 c 2 × ⋯ × p m c m n = p_1^{c_1} \times p_2^{c_2} \times \cdots \times p_m^{c_m} n=p1c1×p2c2××pmcm
φ ( N ) = N × p 1 − 1 p 1 × p 2 − 1 p 2 × ⋯ × p m − 1 p m = N × ∏ 质 数 p ∣ n ( 1 − 1 p ) \varphi(N) = N \times \frac{p_1-1}{p_1} \times \frac{p_2-1}{p_2} \times \cdots \times \frac{p_m-1}{p_m} = N \times \prod_{质数p \mid n}(1-\frac{1}{p}) φ(N)=N×p1p11×p2p21××pmpm1=N×pn(1p1)
 证明:

  要求出 φ ( N ) \varphi(N) φ(N),我们只需求出所有与 N 不互质的数的个数,用总数减去它就好了,而与 N 不互质的数一定是 N 的质因数的 k 倍 ( k ∈ Z k\in Z kZ)。所以我们只需要找出 N 的所有质因数及其小于 N 的所有倍数的和就好了。

  首先假设 p 是 N 的一个质因数,则 p 的小于 N 的倍数就能表示为:
p ,    2 p ,    3 p ,    ⋯    ( N p ) × p p,\; 2p,\; 3p,\; \cdots \; (\frac{N}{p} ) \times p p,2p,3p,(pN)×p

  很容易看出,这个序列一共有 N p \frac{N}{p} pN 个数。同理,我们可以说明另一个 N 的质因数 q 的小于 N 的倍数的总数是 N q \frac{N}{q} qN 个。但是,我们发现这些数 中是有重合的部分的。下面这个序列的数就被算了两次:
p q ,    2 p q ,    3 p q ,    ⋯   ,    N p q × p q pq, \; 2pq, \; 3pq, \; \cdots, \; \frac{N}{pq}\times pq pq,2pq,3pq,,pqN×pq

  这共 N p q \frac{N}{pq} pqN 个数应该被加回来一次。所以我们得到了1 ~ N 中不与, N 含有共同质因子 p, q 的数的个数为:
N − N p − N q + N p q = N × ( 1 − 1 p − 1 q + 1 p q ) = N ( 1 − 1 p ) ( 1 − 1 q ) N-\frac{N}{p} - \frac{N}{q} + \frac{N}{pq} = N\times (1 - \frac{1}{p} - \frac{1}{q} + \frac{1}{pq}) = N(1-\frac{1}{p})(1-\frac{1}{q}) NpNqN+pqN=N×(1p1q1+pq1)=N(1p1)(1q1)

  设 n = n ∏ p i k i n=n\prod p_i^{k_i} n=npiki

  以此类推,我们就可以得到 φ ( n ) = ∏ p ∣ N ( 1 − 1 p ) \varphi(n) = \prod\limits_{p\mid N}(1-\frac{1}{p}) φ(n)=pN(1p1)

  然后根据这个计算式,对 两个互质的数 a, b 分解质因数,就直接可以证明欧拉函数是积性函数:

a = ∏ i = 1 r 1 p i α i b = ∏ i = 1 r 2 q i β i φ ( a ) = a ∏ p ∣ a ( 1 − 1 p ) φ ( b ) = b ∏ q ∣ b ( 1 − 1 q ) a b = ( ∏ i = 1 r 1 p i α i ) ( ∏ i = 1 r 2 q i β i ) = ∏ i = 1 r 3 z i γ i φ ( a b ) = a b ∏ z ∣ a b ( 1 − 1 z ) = a ∏ p ∣ a ( 1 − 1 p ) b ∏ q ∣ b ( 1 − 1 q ) = φ ( a ) φ ( b ) \begin{aligned} & a = \prod_{i = 1}^{r_1}p_i^{\alpha_i} \qquad b = \prod_{i = 1}^{r_2}q_i^{\beta_i} \\ & \varphi(a) = a\prod_{p \mid a}\left(1-\frac 1p\right) \quad \varphi(b) = b\prod_{q \mid b}\left(1-\frac 1q\right) \\ & ab = \left( \prod_{i = 1}^{r_1}p_i^{\alpha_i} \right) \left( \prod_{i = 1}^{r_2}q_i^{\beta_i} \right) = \prod_{i =1}^{r_3}z_i^{\gamma_i} \\ & \varphi(ab) = ab\prod_{z \mid ab}\left( 1 - \frac1z \right) = a\prod_{p \mid a}\left( 1 - \frac 1p \right) b \prod_{q \mid b}\left( 1 - \frac 1q \right) = \varphi(a)\varphi(b) \end{aligned} a=i=1r1piαib=i=1r2qiβiφ(a)=apa(1p1)φ(b)=bqb(1q1)ab=(i=1r1piαi)(i=1r2qiβi)=i=1r3ziγiφ(ab)=abzab(1z1)=apa(1p1)bqb(1q1)=φ(a)φ(b)

  注:最后倒数第二个等式成立因为 a, b 互质。

莫比乌斯函数

  又是一个积性函数,定义式是这样的:
μ ( n ) = { 1 , n = 1 ( − 1 ) k 当 n = ∏ i = 1 k p i , p i 是 互 不 相 同 的 质 数 时 0 , 当 n 质 因 数 分 解 时 分 解 出 的 质 因 子 的 次 数 大 于 一 时 \mu(n) = \begin{cases} 1,\qquad \qquad n = 1 \\ (-1)^k \qquad \quad 当 n = \prod_{i=1}^{k}p_i,p_i 是互不相同的质数时 \\ 0,\qquad \qquad 当 n 质因数分解时分解出的质因子的次数大于一时 \end{cases} μ(n)=1n=1(1)kn=i=1kpipi0n
  显然是积性的,不想证明 qwq。

狄利克雷卷积

h ( n ) = ∑ d ∣ n f ( d ) g ( n d ) h(n) = \sum_{d \mid n}f(d)g\left( \frac nd \right) h(n)=dnf(d)g(dn)

  如果读者有生成函数的 “前置芝士” 的话就很好理解这个玩意儿了 (逃)。如果不理解的话,帮你们百度一下:狄利克雷卷积

几个积性函数互相卷

  下面我们用 * 来表示两个函数的狄利克雷卷积。首先写两个很好懂的卷积:
I ∗ I = ∑ d ∣ n 1 = σ 0 ( n ) I ∗ i d = ∑ d ∣ n d = σ 1 ( n ) \begin{aligned} & I * I = \sum_{d \mid n} 1 = \sigma_0(n) \\ & I * id = \sum_{d \mid n} d = \sigma_1(n) \\ \end{aligned} II=dn1=σ0(n)Iid=dnd=σ1(n)
  然后还有几个比较难懂的(其实也挺好懂的qwq)。
ε ∗ f = f μ ∗ i d = φ I ∗ φ = i d = n \begin{aligned} & \varepsilon * f = f \\ & \mu * id = \varphi \\ & I * \varphi = id = n \\ \end{aligned} εf=fμid=φIφ=id=n

  我们先假设这几个是对的,那我们就很自然地能推导出莫比乌斯反演也就是这样:
μ ∗ i d = φ → I ∗ μ ∗ i d = I ∗ φ = i d → I ∗ μ = ε \begin{aligned} \mu * id = \varphi \rightarrow I * \mu * id = I * \varphi = id \rightarrow I * \mu = \varepsilon \end{aligned} μid=φIμid=Iφ=idIμ=ε
  也就是 μ \mu μ I I I 的逆,即 μ = I − 1 \mu = I^{-1} μ=I1

  所以我们就能知道如果有一个函数 f f f,它满足:
f ∗ I = g f * I = g fI=g

  那就有:
g ∗ μ = f g * \mu = f gμ=f

  这也就是莫比乌斯反演了。那如果我们证明了前面那几个神奇的互卷的函数表达式是对的,那我们也就证明了莫比乌斯反演的正确性。

证明:

ε ∗ f = f \varepsilon * f = f εf=f

  首先我们看看第一个卷积 ε ∗ f = f \varepsilon * f = f εf=f。我们来证明这个玩意儿,根据定义:
ε ( n ) ∗ f ( n ) = ∑ d ∣ n f ( d ) ε ( n d ) = ∑ d ∣ n f ( d ) [ n d = 1 ] \begin{aligned} \varepsilon(n) * f(n) = & \sum_{d \mid n}f(d)\varepsilon\left( \frac nd \right) \\ = & \sum_{d \mid n}f(d) \left[\frac nd = 1 \right] \end{aligned} ε(n)f(n)==dnf(d)ε(dn)dnf(d)[dn=1]

  显然后面那个表达式只有在 d = n d = n d=n 的时候有值且为 1。所以显然就有:
∑ d ∣ n f ( d ) [ n d = 1 ] = ∑ d ∣ n f ( d ) [ n = d ] = f ( n ) → ε ∗ f = f \sum_{d \mid n}f(d) \left[\frac nd = 1 \right] = \sum_{d \mid n}f(d)[n=d] = f(n) \rightarrow \varepsilon * f = f dnf(d)[dn=1]=dnf(d)[n=d]=f(n)εf=f

φ ∗ I = i d = n \varphi * I = id = n φI=id=n

  然后再看第三个卷 I ∗ φ = i d I * \varphi = id Iφ=id,我们来证明一下这玩意儿为什么是正确的的。首先还是根据狄利克雷卷积的定义式:
φ ( n ) ∗ I ( n ) = ∑ d ∣ n φ ( d ) I ( n d ) = ∑ d ∣ n φ ( d ) \begin{aligned} \varphi(n) * I(n) = & \sum_{d \mid n}\varphi(d)I\left( \frac nd \right) \\ = & \sum_{d \mid n}\varphi(d) \end{aligned} φ(n)I(n)==dnφ(d)I(dn)dnφ(d)

  但是我们看到这里应该还是不知道该怎么证这个东西的,这里我们给出一个比较神奇的证明方法,首先我们来看分母为 18 的所有分数(别问我为什么要看,先看下去再说qwq),我们把它们列出来是这样的:

1 18 , 2 18 , 3 18 , 4 18 , 5 18 , 6 18 7 18 , 8 18 , 9 18 , 10 18 , 11 18 , 12 18 13 18 , 14 18 , 15 18 , 16 18 , 17 18 , 18 18 \begin{aligned} & \frac {1}{18}, \frac{2}{18}, \frac{3}{18}, \frac{4}{18}, \frac{5}{18}, \frac{6}{18}\\ \\ & \frac{7}{18}, \frac{8}{18}, \frac{9}{18}, \frac{10}{18}, \frac{11}{18}, \frac{12}{18}\\ \\ & \frac{13}{18}, \frac{14}{18}, \frac{15}{18}, \frac{16}{18}, \frac{17}{18}, \frac{18}{18} \end{aligned} 181,182,183,184,185,186187,188,189,1810,1811,18121813,1814,1815,1816,1817,1818

  我们把他们能约分的约分一下:
1 18 , 1 9 , 1 6 , 2 9 , 5 18 , 1 3 7 18 , 2 9 , 1 2 , 5 9 , 11 18 , 2 3 13 18 , 7 9 , 5 6 , 8 9 , 17 18 , 1 1 \begin{aligned} & \frac {1}{18}, \frac{1}{9}, \frac{1}{6}, \frac{2}{9}, \frac{5}{18}, \frac{1}{3}\\ \\ & \frac{7}{18}, \frac{2}{9}, \frac{1}{2}, \frac{5}{9}, \frac{11}{18}, \frac{2}{3}\\ \\ & \frac{13}{18}, \frac{7}{9}, \frac{5}{6}, \frac{8}{9}, \frac{17}{18}, \frac{1}{1} \end{aligned} 181,91,61,92,185,31187,92,21,95,1811,321813,97,65,98,1817,11

然后我们会发现上面那个玩意儿显然成立qwq。 因为分数已经被化成最简了,所以 g c d ( 分 子 , 分 母 ) = 1 gcd(分子, 分母) = 1 gcd(,)=1 显然成立,所以在这里面分母为 i 的数的个数显然是 φ ( i ) \varphi(i) φ(i) 个。而且所有的这里面存在的所有分母都肯定是 18 的约数,而且所有 18 的约数都出现过(挺显然的对吧)。所以这里面的分数的个数就可以写成:
φ ( 1 ) + φ ( 2 ) + φ ( 3 ) + φ ( 6 ) + φ ( 9 ) + φ ( 18 ) \varphi(1) + \varphi(2) + \varphi(3) + \varphi(6) + \varphi(9) + \varphi(18) φ(1)+φ(2)+φ(3)+φ(6)+φ(9)+φ(18)

  很显然,这个式子就是:
φ ( 1 ) + φ ( 2 ) + φ ( 3 ) + φ ( 6 ) + φ ( 9 ) + φ ( 18 ) = ∑ d ∣ 18 φ ( i ) \varphi(1) + \varphi(2) + \varphi(3) + \varphi(6) + \varphi(9) + \varphi(18) = \sum_{d\mid 18}\varphi(i) φ(1)+φ(2)+φ(3)+φ(6)+φ(9)+φ(18)=d18φ(i)

  而且显然这里的分数的个数是 18 个也就是说:
∑ d ∣ 18 φ ( 18 ) = 18 \sum_{d \mid 18} \varphi(18) = 18 d18φ(18)=18

  我们对所有的数都进行同样的操作,运用归纳法,就证明完毕了qwq。

μ ∗ i d = φ \mu * id = \varphi μid=φ

  现在终于到最后一个式子了,还是根据定义:
μ ( n ) ∗ i d ( n ) = ∑ d ∣ n μ ( d ) n d \mu(n) * id(n) = \sum_{d \mid n}\mu(d)\frac nd μ(n)id(n)=dnμ(d)dn

  很好,根据这个式子还是看不出来怎么证。所以我们还是考虑一种神奇证法。我很考虑一种利用容斥原理计算 φ ( n ) \varphi(n) φ(n) 的方法。我们已 φ ( 60 ) \varphi(60) φ(60) 为例:

  具体来说, 60 = 2 2 × 3 × 5 60 = 2^2 \times 3 \times 5 60=22×3×5,然后我们要计算的是与 60 除了 1 没有公因数的数的个数,那么我们就可以用与 60 有 1 个质因数的数的个数减去与 60 有 2 个不同的质因数的数的个数再加上与 60 有 3 个不同质因数的数的个数。更具体地说,就是总数 60 减去 60 以内 2 的倍数 30 个 减去 60 以内 3 的倍数 20 个 再减去 60 以内 5 的倍数 12 个。再加上 60 以内 6 的倍数 10 个,加上 60 以内 10 的倍数 6 个。最后再减去 60 以内 30 的倍数的个数 2 个,也就是下面这个式子:
φ ( 60 ) = 60 − 30 − 20 − 12 + 10 + 6 + 4 − 2 = 16 \varphi(60) = 60 - 30 - 20 - 12 + 10 + 6 + 4 - 2 = 16 φ(60)=60302012+10+6+42=16

  这个式子又可以写成这样:

φ ( 60 ) = 60 − 30 − 20 − 12 + 10 + 6 + 4 − 2 = 60 1 × ( − 1 ) 0 + ( 60 2 + 60 3 + 60 5 ) × ( − 1 ) 1 + ( 60 2 × 3 + 60 2 × 5 + 60 3 × 5 ) × ( − 1 ) 2 + 60 2 × 3 × 5 × ( − 1 ) 3 = ∑ d ∣ 60 μ ( d ) ( n d ) \begin{aligned} &\varphi(60) \\ = & 60 - 30 - 20 - 12 + 10 + 6 + 4 - 2 \\ = & \frac {60}{1} \times (-1)^0 + \left( \frac{60}{2} + \frac{60}{3} + \frac{60}{5} \right) \times (-1)^1 + \left( \frac{60}{2\times3} + \frac{60}{2\times5} + \frac{60}{3\times5} \right) \times (-1)^2 + \frac{60}{2 \times 3 \times 5} \times (-1)^3 \\ = & \sum_{d \mid 60}\mu(d)\left(\frac nd\right) \end{aligned} ===φ(60)60302012+10+6+42160×(1)0+(260+360+560)×(1)1+(2×360+2×560+3×560)×(1)2+2×3×560×(1)3d60μ(d)(dn)

  我们对每个数也可以做同样的操作,所以我们就证完了。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值